28.02.2013 Views

fundamentals of engineering supplied-reference handbook - Ventech!

fundamentals of engineering supplied-reference handbook - Ventech!

fundamentals of engineering supplied-reference handbook - Ventech!

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

PROBABILITY FUNCTIONS<br />

A random variable X has a probability associated with each<br />

<strong>of</strong> its possible values. The probability is termed a discrete<br />

probability if X can assume only discrete values, or<br />

X = x1, x2, x3, …, xn<br />

The discrete probability <strong>of</strong> any single event, X = xi,<br />

occurring is defined as P(xi) while the probability mass<br />

function <strong>of</strong> the random variable X is defined by<br />

f k<br />

k<br />

( x ) = P(<br />

X = x ), k = 1, 2, ..., n<br />

Probability Density Function<br />

If X is continuous, the probability density function, f, is<br />

defined such that<br />

P ( a ≤ X ≤ b)<br />

= f ( x)<br />

dx<br />

b<br />

∫<br />

a<br />

Cumulative Distribution Functions<br />

The cumulative distribution function, F, <strong>of</strong> a discrete<br />

random variable X that has a probability distribution<br />

described by P(xi) is defined as<br />

m<br />

m<br />

∑<br />

k=<br />

1<br />

k m<br />

F( x ) = P( x ) = P( X ≤ x ), m= 1,2,..., n<br />

If X is continuous, the cumulative distribution function, F,<br />

is defined by<br />

x<br />

( ) = ∫ ( )<br />

F x f t dt<br />

−∞<br />

which implies that F(a) is the probability that X ≤ a.<br />

Expected Values<br />

Let X be a discrete random variable having a probability<br />

mass function<br />

f ( x ), k = 1,2,..., n<br />

k<br />

The expected value <strong>of</strong> X is defined as<br />

n<br />

[ ] ( )<br />

µ= E X = ∑ x f x<br />

k=<br />

1<br />

The variance <strong>of</strong> X is defined as<br />

k k<br />

n<br />

2 2<br />

V X xk f xk<br />

k=<br />

1<br />

[ ] ∑ ( ) ( )<br />

σ = = −µ<br />

Let X be a continuous random variable having a density<br />

function f (X) and let Y = g(X) be some general function.<br />

The expected value <strong>of</strong> Y is:<br />

[ ] [ ]<br />

E Y = E g( X) = ∫ g( x) f( x) dx<br />

∞<br />

−∞<br />

16<br />

ENGINEERING PROBABILITY AND STATISTICS (continued)<br />

The mean or expected value <strong>of</strong> the random variable X is<br />

now defined as<br />

∞<br />

µ= E[ X] = ∫ xf( x) dx<br />

−∞<br />

while the variance is given by<br />

∞<br />

2<br />

[ X ] = E[<br />

( X − µ ) ] = ∫<br />

2<br />

2<br />

σ = V<br />

( x − µ ) f ( x ) dx<br />

The standard deviation is given by<br />

σ=<br />

V[ X]<br />

−∞<br />

The coefficient <strong>of</strong> variation is defined as σ/µ.<br />

Sums <strong>of</strong> Random Variables<br />

Y = a1 X1 + a2 X2 + …+an Xn<br />

The expected value <strong>of</strong> Y is:<br />

( Y ) = a E(<br />

X ) + a E(<br />

X ) + ... a E(<br />

X )<br />

µ y =<br />

1 1 2 2<br />

E +<br />

If the random variables are statistically independent, then<br />

the variance <strong>of</strong> Y is:<br />

σ<br />

2<br />

y<br />

= V<br />

2<br />

2<br />

2<br />

( Y ) = a V ( X ) + a V ( X ) + ... + a V ( X )<br />

1<br />

= a σ + a σ + ... + a σ<br />

2 2 2 2<br />

2 2<br />

1 1 2 2<br />

n n<br />

Also, the standard deviation <strong>of</strong> Y is:<br />

σ<br />

y<br />

=<br />

σ<br />

2<br />

y<br />

1<br />

Binomial Distribution<br />

P(x) is the probability that x successes will occur in n trials.<br />

If p = probability <strong>of</strong> success and q = probability <strong>of</strong> failure =<br />

1 – p, then<br />

x n−x n!<br />

x n−x Pn ( x) = Cnxpq ( , ) = pq ,<br />

x! ( n−x) !<br />

where<br />

x = 0, 1, 2, …, n,<br />

C(n, x) = the number <strong>of</strong> combinations, and<br />

n, p = parameters.<br />

Normal Distribution (Gaussian Distribution)<br />

This is a unimodal distribution, the mode being x = µ, with<br />

two points <strong>of</strong> inflection (each located at a distance σ to<br />

either side <strong>of</strong> the mode). The averages <strong>of</strong> n observations<br />

tend to become normally distributed as n increases. The<br />

variate x is said to be normally distributed if its density<br />

function f (x) is given by an expression <strong>of</strong> the form<br />

1<br />

f ( x) = e<br />

σ 2π<br />

µ = the population mean,<br />

2<br />

2<br />

1⎛<br />

x−µ<br />

⎞<br />

− ⎜ ⎟<br />

2⎝<br />

σ ⎠<br />

2<br />

, where<br />

σ = the standard deviation <strong>of</strong> the population, and<br />

–∞ ≤ x ≤ ∞<br />

n<br />

n<br />

n<br />

n

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!