28.02.2013 Views

fundamentals of engineering supplied-reference handbook - Ventech!

fundamentals of engineering supplied-reference handbook - Ventech!

fundamentals of engineering supplied-reference handbook - Ventech!

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

UNIAXIAL STRESS-STRAIN<br />

Stress-Strain Curve for Mild Steel<br />

♦<br />

The slope <strong>of</strong> the linear portion <strong>of</strong> the curve equals the<br />

modulus <strong>of</strong> elasticity.<br />

DEFINITIONS<br />

Engineering Strain<br />

ε = ∆L / L0, where<br />

ε = <strong>engineering</strong> strain (units per unit),<br />

∆L = change in length (units) <strong>of</strong> member,<br />

L0 = original length (units) <strong>of</strong> member.<br />

Percent Elongation<br />

⎛ ∆L<br />

⎞<br />

% Elongation = ⎜ × 100<br />

⎝ L ⎟<br />

⎠<br />

o<br />

Percent Reduction in Area (RA)<br />

The % reduction in area from initial area, Ai, to final area,<br />

Af, is:<br />

⎛ Ai − Af<br />

⎞<br />

%RA = ⎜ × 100<br />

⎝ A<br />

⎟<br />

⎠<br />

True Stress is load divided by actual cross-sectional area.<br />

Shear Stress-Strain<br />

γ = τ/G, where<br />

γ = shear strain,<br />

τ = shear stress, and<br />

i<br />

G = shear modulus (constant in linear force-deformation<br />

relationship).<br />

E<br />

G = , where<br />

2 1<br />

( + ν)<br />

E = modulus <strong>of</strong> elasticity<br />

v = Poisson's ratio, and<br />

= – (lateral strain)/(longitudinal strain).<br />

MECHANICS OF MATERIALS<br />

38<br />

Uniaxial Loading and Deformation<br />

σ = P/A, where<br />

σ = stress on the cross section,<br />

P = loading, and<br />

A = cross-sectional area.<br />

ε = δ/L, where<br />

δ = elastic longitudinal deformation and<br />

L = length <strong>of</strong> member.<br />

E<br />

δ =<br />

= σ ε =<br />

PL<br />

AE<br />

P<br />

δ<br />

A<br />

L<br />

THERMAL DEFORMATIONS<br />

δt = αL (Τ – Τo), where<br />

δt = deformation caused by a change in temperature,<br />

α = temperature coefficient <strong>of</strong> expansion,<br />

L = length <strong>of</strong> member,<br />

Τ = final temperature, and<br />

Τo = initial temperature.<br />

CYLINDRICAL PRESSURE VESSEL<br />

Cylindrical Pressure Vessel<br />

For internal pressure only, the stresses at the inside wall are:<br />

2<br />

o<br />

2<br />

o<br />

2<br />

i<br />

2<br />

i<br />

r + r<br />

σt = Pi and 0 > σr<br />

> −Pi<br />

r − r<br />

For external pressure only, the stresses at the outside wall<br />

are:<br />

2<br />

o<br />

2<br />

o<br />

2<br />

i<br />

2<br />

i<br />

r + r<br />

σt = −Po<br />

and 0 > σr<br />

> −Po<br />

, where<br />

r − r<br />

σt = tangential (hoop) stress,<br />

σr = radial stress,<br />

Pi = internal pressure,<br />

Po = external pressure,<br />

ri = inside radius, and<br />

ro = outside radius.<br />

For vessels with end caps, the axial stress is:<br />

σ<br />

a<br />

= Pi<br />

r<br />

2<br />

ri<br />

2 2<br />

o − ri<br />

These are principal stresses.<br />

♦ Flinn, Richard A. & Paul K. Trojan, Engineering Materials & Their Applications,<br />

4th ed., Houghton Mifflin Co., 1990.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!