28.02.2013 Views

fundamentals of engineering supplied-reference handbook - Ventech!

fundamentals of engineering supplied-reference handbook - Ventech!

fundamentals of engineering supplied-reference handbook - Ventech!

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

3. Transient responses are obtained by using Laplace<br />

Transforms or computer solutions with numerical<br />

integration.<br />

Common Compensator/Controller forms are<br />

⎛ 1 ⎞<br />

PID Controller GC(s) = K<br />

⎜<br />

⎜1<br />

+ + TDs<br />

⎟<br />

⎝ TI<br />

s ⎠<br />

Lag or Lead Compensator GC(s) =<br />

depending on the ratio <strong>of</strong> T1/T2.<br />

Routh Test<br />

For the characteristic equation<br />

⎛ 1+<br />

sT ⎞<br />

⎜ 1 K<br />

⎟<br />

⎝1<br />

+ sT2<br />

⎠<br />

ans n + an–1s n–1 + an–2s n–2 + … + a0 = 0<br />

the coefficients are arranged into the first two rows <strong>of</strong> an<br />

array. Additional rows are computed. The array and<br />

coefficient computations are defined by:<br />

where<br />

an an–2 a n–4 … … …<br />

a n–1 a n–3 a n–5 … … …<br />

b1 b2 b3 … … …<br />

c1 c2 c3 … … …<br />

a<br />

b =<br />

b<br />

1<br />

2<br />

…<br />

a<br />

=<br />

a − ana<br />

a<br />

n−1<br />

n−2<br />

n−1<br />

a − ana<br />

a<br />

n−1<br />

n−4<br />

n−1<br />

n−3<br />

n−5<br />

a<br />

c =<br />

1<br />

c<br />

2<br />

a<br />

=<br />

b − a<br />

b<br />

n−3<br />

1<br />

n−5<br />

1<br />

1<br />

b − a<br />

b<br />

1<br />

n−1<br />

b<br />

n−1<br />

The necessary and sufficient conditions for all the roots <strong>of</strong><br />

the equation to have negative real parts is that all the<br />

elements in the first column be <strong>of</strong> the same sign and<br />

nonzero.<br />

First-Order Control System Models<br />

The transfer function model for a first-order system is<br />

Ys () K<br />

= , where<br />

Rs () τ s+<br />

1<br />

K = steady state gain,<br />

τ = time constant<br />

The step response <strong>of</strong> a first-order system to a step input <strong>of</strong><br />

magnitude M is<br />

−t/ τ −t/ τ<br />

0<br />

yt () = ye + KM(1−<br />

e )<br />

In the chemical process industry, y0 is typically taken to be<br />

zero and y(t) is referred to as a deviation variable.<br />

2<br />

b<br />

3<br />

89<br />

MEASUREMENT AND CONTROLS (continued)<br />

For systems with time delay (dead time or transport lag) θ<br />

the transfer function is<br />

−θs<br />

Ys () Ke<br />

=<br />

Rs () τ s+<br />

1<br />

The step response for t ≥ θ to a step <strong>of</strong> magnitude M is<br />

( t ) / ( t )/<br />

( )<br />

− −θ τ − −θ τ<br />

yt () = ⎡ye 0 + KM1−e ⎤ut<br />

( −θ)<br />

, where<br />

⎣ ⎦<br />

u(t) is the unit step function.<br />

Second-Order Control-System Models<br />

One standard second-order control-system model is<br />

( )<br />

( )<br />

2<br />

ωn<br />

2 2<br />

+ 2ζω<br />

n +ω n<br />

Y s K<br />

=<br />

Rs s s<br />

K = steady state gain,<br />

ζ = the damping ratio,<br />

, where<br />

ωn = the undamped natural (ζ = 0) frequency,<br />

2<br />

ωd = ωn<br />

1− ζ , the damped natural frequency,<br />

and<br />

2<br />

ω =ω 1−2ζ , the damped resonant frequency.<br />

r n<br />

If the damping ratio ζ is less than unity, the system is said to<br />

be underdamped; if ζ is equal to unity, it is said to be<br />

critically damped; and if ζ is greater than unity, the system<br />

is said to be overdamped.<br />

For a unit step input to a normalized underdamped secondorder<br />

control system, the time required to reach a peak value<br />

tp and the value <strong>of</strong> that peak Mp are given by<br />

t<br />

p<br />

M<br />

= π ⎜<br />

⎛ωn 1−<br />

ζ<br />

⎝<br />

p<br />

= 1+<br />

e<br />

−πζ<br />

2<br />

2<br />

1−ζ<br />

⎟<br />

⎞<br />

⎠<br />

For an underdamped second-order system, the logarithmic<br />

decrement is<br />

δ =<br />

1 ⎛ x<br />

ln⎜<br />

m ⎜<br />

⎝ xk<br />

k<br />

+m<br />

⎞<br />

⎟<br />

=<br />

⎠<br />

2πζ<br />

1−<br />

ζ<br />

where xk and xk+m are the amplitudes <strong>of</strong> oscillation at cycles<br />

k and k + m, respectively. The period <strong>of</strong> oscillation τ is<br />

related to ωd by<br />

ωd τ = 2π<br />

The time required for the output <strong>of</strong> a second-order system to<br />

settle to within 2% <strong>of</strong> its final value is defined to be<br />

Ts<br />

=<br />

ζω<br />

4<br />

n<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!