28.02.2013 Views

fundamentals of engineering supplied-reference handbook - Ventech!

fundamentals of engineering supplied-reference handbook - Ventech!

fundamentals of engineering supplied-reference handbook - Ventech!

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

FOURIER SERIES<br />

Every periodic function f(t) which has the period<br />

T = 2 π/ ω 0 and has certain continuity conditions can be<br />

represented by a series plus a constant<br />

∞<br />

0 0 0<br />

n=<br />

1<br />

f (t)<br />

1<br />

0<br />

T<br />

2<br />

T<br />

∑ [ n n ]<br />

f () t = a /2+ a cos( nω t) + b sin( nω t)<br />

The above holds if f(t) has a continuous derivative f′(t) for<br />

all t. It should be noted that the various sinusoids present in<br />

the series are orthogonal on the interval 0 to T and as a<br />

result the coefficients are given by<br />

0<br />

T<br />

0<br />

a = (1/ T) f( t) dt<br />

T<br />

0<br />

a = (2 / T) f( t)cos( nω t) dt n=<br />

1, 2, �<br />

n<br />

T<br />

0<br />

b = (2 / T) f( t)sin( nω t) dt n=<br />

1, 2, �<br />

n<br />

∫<br />

∫<br />

∫<br />

T<br />

2<br />

0<br />

0<br />

The constants an and bn are the Fourier coefficients <strong>of</strong> f(t)<br />

for the interval 0 to T and the corresponding series is<br />

called the Fourier series <strong>of</strong> f(t) over the same interval.<br />

The integrals have the same value when evaluated over<br />

any interval <strong>of</strong> length T.<br />

If a Fourier series representing a periodic function is<br />

truncated after term n = N the mean square value<br />

V o<br />

t<br />

V o<br />

2<br />

F N <strong>of</strong><br />

the truncated series is given by the Parseval relation.<br />

This relation says that the mean-square value is the sum<br />

<strong>of</strong> the mean-square values <strong>of</strong> the Fourier components, or<br />

N<br />

2<br />

2 2<br />

( a / ) + ( 1/<br />

2)<br />

( a b )<br />

2<br />

N = 0 ∑<br />

n=<br />

1<br />

F 2 n + n<br />

and the RMS value is then defined to be the square root<br />

<strong>of</strong> this quantity or FN.<br />

Three useful and common Fourier series forms are defined<br />

in terms <strong>of</strong> the following graphs (with ωo = 2π/T).<br />

Given:<br />

then<br />

f<br />

1<br />

() ( ) ( ) n−1<br />

2<br />

t −1<br />

( 4V<br />

nπ)<br />

cos ( n t)<br />

= ∞<br />

∑ o ω<br />

n=<br />

1<br />

( n odd)<br />

o<br />

173<br />

Given:<br />

then<br />

Given:<br />

then<br />

f<br />

f<br />

f<br />

3<br />

3<br />

3<br />

ELECTRICAL AND COMPUTER ENGINEERING (continued)<br />

f (t)<br />

2<br />

T 0<br />

f<br />

f<br />

2<br />

2<br />

() t<br />

() t<br />

2<br />

T<br />

2T<br />

V o<br />

τ ∞ sin(<br />

nπτ<br />

T )<br />

n=<br />

1 ( nπτ<br />

T )<br />

( nπτ<br />

T ) jnωot<br />

e<br />

( nπτ<br />

T )<br />

Voτ<br />

2Vo<br />

= +<br />

T T<br />

V τ ∞<br />

o sin<br />

= ∑<br />

T n=<br />

−∞<br />

∑ cos ω<br />

t<br />

( n t)<br />

f (t) = "a train <strong>of</strong> impulses with weights A"<br />

3<br />

T 0 T 2T 3T<br />

∞<br />

() t = Aδ(<br />

t − nT )<br />

∑<br />

n=<br />

−∞<br />

∞<br />

() t = ( A T ) + ( 2A<br />

T ) cos<br />

( nω<br />

t)<br />

∞<br />

() t = ( A T )∑<br />

e<br />

jnωot<br />

n=<br />

−∞<br />

∑<br />

n=<br />

1<br />

o<br />

t<br />

o

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!