28.02.2013 Views

fundamentals of engineering supplied-reference handbook - Ventech!

fundamentals of engineering supplied-reference handbook - Ventech!

fundamentals of engineering supplied-reference handbook - Ventech!

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Therefore, the impulse response h(t) and frequency response<br />

H(f) form a Fourier transform pair:<br />

Parseval’s Theorem<br />

h( t)<br />

↔ H ( f )<br />

The total energy in an energy signal (finite energy) x(t) is<br />

given by<br />

+∞ 2 +∞ 2<br />

∫ ∫<br />

E = x() t dt = X( f) df<br />

∫<br />

−∞ −∞<br />

+∞<br />

= G ( f) df =φ (0)<br />

−∞<br />

xx xx<br />

Parseval’s Theorem for Fourier Series<br />

As described in the following section, a periodic signal x(t)<br />

with period T0 and fundamental frequency f0 = 1/T0 = ω0/2π<br />

can be represented by a complex-exponential Fourier series<br />

n=+∞<br />

xt () = ∑ Xne n=−∞<br />

jn2πf0t The average power in the dc component and the first N<br />

harmonics is<br />

n=+ N<br />

∑<br />

2<br />

n<br />

2<br />

0<br />

n= N<br />

2 ∑<br />

2<br />

n<br />

n=− N n=<br />

0<br />

P = X = X + X<br />

The total average power in the periodic signal x(t) is given<br />

by Parseval’s theorem:<br />

1 t0+ T<br />

n=+∞<br />

0 2<br />

= ()<br />

T ∫<br />

=<br />

t ∑<br />

0 0<br />

n=−∞<br />

P x t dt X<br />

AM (Amplitude Modulation)<br />

x () t = A [ A+ m()]cos(2 t πf<br />

t)<br />

AM c c<br />

'<br />

c n c<br />

= A [1 + am ( t)]cos(2 πft)<br />

2<br />

n<br />

The modulation index is a, and the normalized message is<br />

mt ()<br />

mn() t =<br />

max mt ( )<br />

The efficiency η is the percent <strong>of</strong> the total transmitted power<br />

that contains the message.<br />

2 2<br />

n<br />

2 2<br />

n<br />

a < m () t ><br />

η= 100 percent<br />

1 + a < m ( t)<br />

><br />

where the mean-squared value or normalized average power<br />

in mn(t) is<br />

2 1 + T 2<br />

< mn() t >= lim mn() t dt<br />

T →∞ 2T<br />

∫ −T<br />

If M(f) = 0 for |f | > W, then the bandwidth <strong>of</strong> xAM(t) is 2W.<br />

AM signals can be demodulated with an envelope detector<br />

or a synchronous demodulator.<br />

177<br />

ELECTRICAL AND COMPUTER ENGINEERING (continued)<br />

DSB (Double-Sideband Modulation)<br />

x () t = A m()cos(2 t π f t)<br />

DSB c c<br />

If M(f) = 0 for |f | > W, then the bandwidth <strong>of</strong> mt () is W and<br />

the bandwidth <strong>of</strong> xDSB(t) is 2W. DSB signals must be<br />

demodulated with a synchronous demodulator. A Costas<br />

loop is <strong>of</strong>ten used.<br />

SSB (Single-Sideband Modulation)<br />

Lower Sideband:<br />

Upper Sideband:<br />

⎛ f ⎞<br />

xLSB () t ↔ XLSB ( f) = XDSB( f)<br />

Π⎜ ⎝2f⎟ ⎠<br />

⎡ ⎛ f ⎞⎤<br />

xUSB ( t) ↔ XUSB ( f) = XDSB( f)<br />

⎢1−Π⎜ ⎥<br />

2 f ⎟<br />

⎣ ⎝ c ⎠⎦<br />

In either case, if M(f) = 0 for |f | > W, then the bandwidth <strong>of</strong><br />

xLSB(t) or <strong>of</strong> xUSB(t) is W. SSB signals can be demodulated<br />

with a synchronous demodulator or by carrier reinsertion<br />

and envelope detection.<br />

Angle Modulation<br />

x () t = A cos[2 π f t +φ ()] t<br />

Ang c c<br />

The phase deviation φ(t) is a function <strong>of</strong> the message m(t).<br />

The instantaneous phase is<br />

φ () t = 2 π f t+φ () t radians<br />

i c<br />

The instantaneous frequency is<br />

d d<br />

ω i() t = φ i() t = 2 π fc + φ () t radians/s<br />

dt dt<br />

The frequency deviation is<br />

d<br />

∆ω () t = φ () t radians/s<br />

dt<br />

PM (Phase Modulation)<br />

The phase deviation is<br />

φ () t =<br />

k m() t radians<br />

P<br />

c

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!