28.02.2013 Views

fundamentals of engineering supplied-reference handbook - Ventech!

fundamentals of engineering supplied-reference handbook - Ventech!

fundamentals of engineering supplied-reference handbook - Ventech!

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Position Analysis. Given a, b, c, and d, and θ2<br />

⎛ 2 ⎞<br />

− B± B −4AC<br />

θ 4 = 2arctan⎜<br />

⎟<br />

1,2 ⎜<br />

⎝ 2A<br />

⎟<br />

⎠<br />

where A = cos θ2 – K1 – K2 cos θ2 + K3<br />

B = 2sin θ2<br />

C = K1 – (K2 + 1) cos θ2 + K3 , and<br />

K<br />

1<br />

=<br />

d<br />

a<br />

,<br />

K<br />

2<br />

=<br />

d<br />

c<br />

,<br />

K<br />

3<br />

a<br />

=<br />

2<br />

2<br />

− b + c<br />

2ac<br />

2<br />

+ d<br />

In the equation for θ4, using the minus sign in front <strong>of</strong> the<br />

radical yields the open solution. Using the plus sign yields<br />

the crossed solution.<br />

⎛ 2<br />

− E ± E −4DF<br />

⎞<br />

θ 3 = 2arctan⎜<br />

⎟<br />

1,2 ⎜<br />

⎝ 2 D ⎟<br />

⎠<br />

where D = cos θ2 – K1 + K4 cos θ2 + K5<br />

E = –2sin θ2<br />

F = K1 + (K4 – 1) cos θ2 + K5 , and<br />

K<br />

4<br />

=<br />

d<br />

b<br />

,<br />

K<br />

5<br />

c<br />

=<br />

2<br />

2<br />

− d − a<br />

2 ab<br />

2<br />

− b<br />

In the equation for θ3, using the minus sign in front <strong>of</strong> the<br />

radical yields the open solution. Using the plus sign yields<br />

the crossed solution.<br />

Velocity Analysis. Given a, b, c, and d, θ2, θ3, θ4, and ω2<br />

aω2<br />

sin ( θ4 −θ2)<br />

ω 3 =<br />

b sin θ −θ<br />

aω<br />

ω 4 =<br />

c<br />

2<br />

sin<br />

sin<br />

( 3 4)<br />

( θ2 −θ3)<br />

( θ −θ )<br />

4 3<br />

V =−aωsin θ , V = a ω cosθ<br />

Ax 2 2 Ay 2 2<br />

V =−bωsin θ , V = b ω cosθ<br />

BAx 3 3 BAy 3 3<br />

V =−cωsin θ , V = c ω cosθ<br />

Bx 4 4 By 4 4<br />

See also Instantaneous Centers <strong>of</strong> Rotation in the DYNAMICS<br />

section.<br />

Acceleration analysis. Given a, b, c, and d, θ2, θ3, θ4, and<br />

ω2, ω3, ω4, and α2<br />

CD − AF CE −BF<br />

α 3 = , α 4 = , where<br />

AE −BD AE − BD<br />

A= csin θ , B= b sin θ<br />

4 3<br />

2sin 2<br />

2<br />

2cos 2<br />

2<br />

3cos 3<br />

2<br />

4cos 4<br />

C = aα θ + aω θ + bω θ −c ω θ<br />

D= ccos θ , E = b cosθ<br />

4 3<br />

2cos2 2<br />

2sin 2<br />

2<br />

3sin 3<br />

2<br />

4sin 4<br />

F = aα θ −aω θ −bω θ + c ω θ<br />

2<br />

2<br />

207<br />

MECHANICAL ENGINEERING (continued)<br />

Gearing<br />

Involute Gear Tooth Nomenclature<br />

Circular pitch pc = πd/N<br />

Base pitch pb = pc cos φ<br />

Module m = d/N<br />

Center distance C = (d1 + d2)/2<br />

where<br />

N = number <strong>of</strong> teeth on pinion or gear<br />

d = pitch circle diameter<br />

φ = pressure angle<br />

Gear Trains: Velocity ratio, mv, is the ratio <strong>of</strong> the output<br />

velocity to the input velocity. Thus, mv = ωout / ωin. For a<br />

two-gear train, mv = –Nin /Nout where Nin is the number <strong>of</strong><br />

teeth on the input gear and Nout is the number <strong>of</strong> teeth on<br />

the output gear. The negative sign indicates that the<br />

output gear rotates in the opposite sense with respect to<br />

the input gear. In a compound gear train, at least one<br />

shaft carries more than one gear (rotating at the same<br />

speed). The velocity ratio for a compound train is:<br />

product <strong>of</strong> number <strong>of</strong> teeth on driver gears<br />

m v = ±<br />

product <strong>of</strong> number <strong>of</strong> teeth on driven gears<br />

A simple planetary gearset has a sun gear, an arm that<br />

rotates about the sun gear axis, one or more gears<br />

(planets) that rotate about a point on the arm, and a ring<br />

(internal) gear that is concentric with the sun gear. The<br />

planet gear(s) mesh with the sun gear on one side and<br />

with the ring gear on the other. A planetary gearset has<br />

two independent inputs and one output (or two outputs<br />

and one input, as in a differential gearset).<br />

Often, one <strong>of</strong> the inputs is zero, which is achieved by<br />

grounding either the sun or the ring gear. The velocities<br />

in a planetary set are related by<br />

ω f − ωarm<br />

= ± mv<br />

, where<br />

ω − ω<br />

L<br />

arm<br />

ωf = speed <strong>of</strong> the first gear in the train,<br />

ωL = speed <strong>of</strong> the last gear in the train, and<br />

ωarm = speed <strong>of</strong> the arm.<br />

Neither the first nor the last gear can be one that has<br />

planetary motion. In determining mv, it is helpful to<br />

invert the mechanism by grounding the arm and releasing<br />

any gears that are grounded.<br />

Dynamics <strong>of</strong> Mechanisms<br />

Gearing<br />

Loading on Straight Spur Gears: The load, W, on<br />

straight spur gears is transmitted along a plane that, in<br />

edge view, is called the line <strong>of</strong> action. This line makes an<br />

angle with a tangent line to the pitch circle that is called<br />

the pressure angle φ. Thus, the contact force has two<br />

components: one in the tangential direction, Wt, and one<br />

in the radial direction, Wr. These components are related<br />

to the pressure angle by<br />

Wr = Wt tan(φ).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!