28.02.2013 Views

fundamentals of engineering supplied-reference handbook - Ventech!

fundamentals of engineering supplied-reference handbook - Ventech!

fundamentals of engineering supplied-reference handbook - Ventech!

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Normal and Tangential Components<br />

y<br />

Unit vectors et and en are, respectively, tangent and normal<br />

to the path with en pointing to the center <strong>of</strong> curvature. Thus<br />

v = vt () e<br />

t<br />

2<br />

t t n<br />

a = at () e + ( v /ρ) e , where<br />

ρ = instantaneous radius <strong>of</strong> curvature<br />

Constant Acceleration<br />

The equations for the velocity and displacement when<br />

acceleration is a constant are given as<br />

a(<br />

t)<br />

= a<br />

0<br />

v(<br />

t)<br />

= a ( t − t ) + v<br />

0<br />

s(<br />

t)<br />

= a ( t − t )<br />

s<br />

v<br />

a<br />

0<br />

0<br />

0<br />

2<br />

0<br />

/ 2<br />

+ v ( t − t ) + s ,<br />

s = distance along the line <strong>of</strong> travel<br />

0 0<br />

0 0<br />

0<br />

0<br />

= displacement at time t<br />

0<br />

0<br />

0<br />

where<br />

v = velocity along the direction <strong>of</strong> travel<br />

t<br />

=<br />

velocity at time t<br />

= constant acceleration<br />

t = time, and<br />

= some initial time<br />

For a free-falling body, a = g (downward) .<br />

0<br />

An additional equation for velocity as a function <strong>of</strong> position<br />

may be written as<br />

2<br />

en<br />

r<br />

2<br />

PATH<br />

et<br />

v = v0<br />

+ 2a0 ( s − s0<br />

)<br />

x<br />

30<br />

y<br />

θ<br />

v0<br />

x<br />

DYNAMICS (continued)<br />

For constant angular acceleration, the equations for angular<br />

velocity and displacement are<br />

α(<br />

t)<br />

= α0<br />

ω(<br />

t)<br />

= α ( t − t ) + ω<br />

0<br />

θ(<br />

t)<br />

= α ( t − t )<br />

θ= angular displacement<br />

0<br />

0<br />

0<br />

2<br />

/ 2<br />

θ = angular displacement at time t<br />

0 0<br />

ω= angular velocity<br />

ω = angular velocity at time t<br />

0 0<br />

α = constant angular acceleration<br />

t<br />

0<br />

t=<br />

time, and<br />

0<br />

= some initial time<br />

0<br />

+ ω ( t − t ) + θ ,<br />

0<br />

0<br />

0<br />

where<br />

An additional equation for angular velocity as a function <strong>of</strong><br />

angular position may be written as<br />

ω<br />

2<br />

2<br />

0<br />

= ω<br />

+ 2α0 ( θ − θ0<br />

)<br />

Non-constant Acceleration<br />

When non-constant acceleration, a(t), is considered, the<br />

equations for the velocity and displacement may be obtained<br />

from<br />

v(<br />

t)<br />

= ∫ a(<br />

τ)<br />

dτ<br />

+ v<br />

t<br />

t<br />

s(<br />

t)<br />

= ∫ v(<br />

τ)<br />

dτ<br />

+ s<br />

t<br />

t<br />

o<br />

o<br />

For variable angular acceleration<br />

ω(<br />

t)<br />

= ∫ α(<br />

τ)<br />

dτ<br />

+ ωt<br />

t<br />

t<br />

θ(<br />

t)<br />

= ∫ ω(<br />

τ)<br />

dτ<br />

+ θ<br />

Projectile Motion<br />

t<br />

t<br />

0<br />

0<br />

t<br />

t<br />

0<br />

0<br />

t<br />

0<br />

0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!