28.02.2013 Views

fundamentals of engineering supplied-reference handbook - Ventech!

fundamentals of engineering supplied-reference handbook - Ventech!

fundamentals of engineering supplied-reference handbook - Ventech!

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Facultative Pond<br />

BOD Loading<br />

Mass (lb/day) = Flow (MGD) × Concentration (mg/L)<br />

× 8.34(lb/MGal)/(mg/L)<br />

Total System ≤ 35 pounds BOD5/acre-day<br />

Minimum = 3 ponds<br />

Depth = 3−8 ft<br />

Minimum t = 90−120 days<br />

WATER TREATMENT TECHNOLOGIES<br />

Activated Carbon Adsorption<br />

Freundlich Isotherm<br />

x 1 n<br />

X = KCe<br />

= , where<br />

m<br />

x = mass <strong>of</strong> solute adsorbed,<br />

m = mass <strong>of</strong> adsorbent,<br />

X = mass ratio <strong>of</strong> the solid phase—that is, the mass <strong>of</strong><br />

adsorbed solute per mass <strong>of</strong> adsorbent,<br />

Ce = equilibrium concentration <strong>of</strong> solute, mass/volume,<br />

and<br />

K, n = experimental constants.<br />

Linearized Form<br />

x<br />

ln = 1 nlnCe+ lnK<br />

m<br />

For linear isotherm, n = 1<br />

Langmuir Isotherm<br />

x aKCe<br />

= X = , where<br />

m 1+<br />

KC<br />

e<br />

a = mass <strong>of</strong> adsorbed solute required to saturate<br />

completely a unit mass <strong>of</strong> adsorbent, and<br />

K = experimental constant.<br />

Linearized Form<br />

m 1 1 1<br />

= +<br />

x a aK Ce<br />

C, ,<br />

mg/l<br />

Cα =<br />

Co<br />

z<br />

161<br />

Depth <strong>of</strong> Sorption Zone<br />

VZ<br />

ZS<br />

Z<br />

s<br />

(QW, CIN)<br />

(QW, COUT)<br />

⎡<br />

= Z ⎢<br />

⎣V<br />

= VT – VB<br />

T<br />

ENVIRONMENTAL ENGINEERING (continued)<br />

VZ<br />

− 0.<br />

5V<br />

= depth <strong>of</strong> sorption zone,<br />

Z = total carbon depth,<br />

Z<br />

⎤<br />

⎥ , where<br />

⎦<br />

VolT = total volume treated at<br />

exhaustion (C = 0.95 Co),<br />

VolB = total volume at<br />

breakthrough (C = Cα =<br />

0.05 Co), and<br />

Co = concentration <strong>of</strong> Ce<br />

contaminant in influent.<br />

Air Stripping<br />

where<br />

(QA, AOUT)<br />

Aout = H′Cin<br />

Qw[Cin] = QA [H′Cin]<br />

Qw = QA[H′]<br />

H′(QA / QW) = 1<br />

(QA, AIN)<br />

Aout = concentration in the effluent air,<br />

H = Henry's Law constant,<br />

H′ = H/RT = dimensionless Henry's Law constant,<br />

T = temperature in units consistent with R<br />

R = universal gas constant, QW<br />

flow rate (m<br />

= water<br />

3 /s),<br />

QA = air flow rate (m 3 /s),<br />

A = concentration <strong>of</strong> contaminant in air (kmol/m 3 ), and<br />

C = concentration <strong>of</strong> contaminants in water (kmol/m 3 ).<br />

Stripper Packing Height = Z<br />

Z = HTU × NTU<br />

⎛ R ⎞ ⎛( Cin Cout )( R−<br />

1) + 1⎞<br />

NTU = ⎜ ln<br />

⎝<br />

⎟<br />

R−1⎠ ⎜<br />

R<br />

⎟<br />

⎝ ⎠<br />

NTU = number <strong>of</strong> transfer units<br />

Z<br />

Zs<br />

Co<br />

Qin<br />

Co<br />

Qout

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!