28.02.2013 Views

fundamentals of engineering supplied-reference handbook - Ventech!

fundamentals of engineering supplied-reference handbook - Ventech!

fundamentals of engineering supplied-reference handbook - Ventech!

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

LAPLACE TRANSFORMS<br />

The unilateral Laplace transform pair<br />

∞ −st<br />

0<br />

( ) = ∫ ( )<br />

F s f t e dt<br />

1 σ+ i∞ st<br />

f () t = F( s) e dt<br />

2πj<br />

∫ σ−i∞ represents a powerful tool for the transient and frequency<br />

response <strong>of</strong> linear time invariant systems. Some useful<br />

Laplace transform pairs are [Note: The last two transforms<br />

represent the Final Value Theorem (F.V.T.) and Initial<br />

Value Theorem (I.V.T.) respectively. It is assumed that the<br />

limits exist.]:<br />

f(t) F(s)<br />

δ(t), Impulse at t = 0 1<br />

u(t), Step at t = 0 1/s<br />

t[u(t)], Ramp at t =0 1/s 2<br />

–α t<br />

e<br />

1/(s + α)<br />

te –α t 1/(s + α) 2<br />

e –α t sin βt β/[(s + α) 2 + β 2 ]<br />

e –α t cos βt (s + α)/[(s + α) 2 + β 2 ]<br />

n<br />

d f<br />

dt<br />

t<br />

() t<br />

n<br />

() τ<br />

s<br />

n<br />

F<br />

() s<br />

∫0<br />

f dτ<br />

(1/s)F(s)<br />

∫<br />

( t − τ)<br />

t<br />

0 x h(<br />

t ) dτ<br />

H(s)X(s)<br />

f (t – τ) e –τ s F(s)<br />

limit f () t<br />

limit sF()<br />

s<br />

t→∞ limit<br />

t→0 f () t<br />

s→0 limit<br />

s→∞ n 1<br />

n m 1<br />

− ∑ s<br />

m 0<br />

−<br />

− −<br />

=<br />

sF()<br />

s<br />

m<br />

d f<br />

m<br />

d t<br />

( 0)<br />

DIFFERENCE EQUATIONS<br />

Difference equations are used to model discrete systems.<br />

Systems which can be described by difference equations<br />

include computer program variables iteratively evaluated in<br />

a loop, sequential circuits, cash flows, recursive processes,<br />

systems with time-delay components, etc. Any system<br />

whose input v(t) and output y(t) are defined only at the<br />

equally spaced intervals t = kT can be described by a<br />

difference equation.<br />

First-Order Linear Difference Equation<br />

A first-order difference equation<br />

y[k] + a1 y[ k – 1] = x[k]<br />

174<br />

ELECTRICAL AND COMPUTER ENGINEERING (continued)<br />

Second-Order Linear Difference Equation<br />

A second-order difference equation is<br />

y[k] + a1 y[k – 1] + a2 y[k – 2] = x[k]<br />

z-Transforms<br />

The transform definition is<br />

∞<br />

F( z) = ∑ f [ k] z<br />

k=<br />

0<br />

−k<br />

The inverse transform is given by the contour integral<br />

1<br />

k −1<br />

f ( k) = F( z) z dz<br />

2πj<br />

∫� Γ<br />

and it represents a powerful tool for solving linear shift<br />

invariant difference equations. A limited unilateral list <strong>of</strong> ztransform<br />

pairs follows [Note: The last two transform pairs<br />

represent the Initial Value Theorem (I.V.T.) and the Final<br />

Value Theorem (F.V.T.) respectively.]:<br />

f[k] F(z)<br />

δ[k], Impulse at k = 0 1<br />

u[k], Step at k = 0 1/(1 – z –1 )<br />

β k<br />

1/(1 – βz –1 )<br />

y[k – 1]<br />

z –1 Y(z) + y(–1)<br />

y[k – 2] z –2 Y(z) + y(–2) + y(–1)z –1<br />

y[k + 1] zY(z) – zy(0)<br />

y[k + 2] z 2 Y(z) – z 2 y(0) – zy(1)<br />

∞<br />

∑ X [ k − m] h[ m]<br />

H(z)X(z)<br />

m=<br />

0<br />

k→0<br />

[ ]<br />

limit f k<br />

[ ]<br />

limit f k<br />

k→∞<br />

CONVOLUTION<br />

Continuous-time convolution:<br />

limit F<br />

z→∞ limit<br />

z→1<br />

( z)<br />

−1<br />

( 1−<br />

z ) F(<br />

z)<br />

() () () ∫ ( ) ( )<br />

vt = xt∗ yt = xτ yt−τ dτ<br />

Discrete-time convolution:<br />

∞<br />

−∞<br />

[ ] = [ ] ∗ [ ] = ∑<br />

[ ] [ − ]<br />

vn xn yn xk yn k<br />

∞<br />

k =−∞

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!