29.06.2013 Views

NUI Galway – UL Alliance First Annual ENGINEERING AND - ARAN ...

NUI Galway – UL Alliance First Annual ENGINEERING AND - ARAN ...

NUI Galway – UL Alliance First Annual ENGINEERING AND - ARAN ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

The Elasto-Plastic Properties of Trabecular Bone and Polyurethane Foam:<br />

An Experimental and Computational Characterisation<br />

Kelly, N. 1,2 , McGarry, J.P. 1,2<br />

1 Department of Mechanical and Biomedical Engineering, National University of Ireland, <strong>Galway</strong><br />

2 National Centre for Biomedical Engineering Science, National University of Ireland, <strong>Galway</strong><br />

n.kelly3@nuigalway.ie<br />

Abstract<br />

During compressive loading trabecular bone can<br />

undergo extensive inelastic deformation reaching<br />

strains up to 60 % prior to ultimate failure [1] . Previous<br />

bone plasticity studies have considered a number of<br />

pressure dependent constitutive formulations including<br />

the Drucker-Prager (DP) and Mohr-Coulomb (MC)<br />

models [1-3] . The crushable foam (CF) plasticity model<br />

has been used to model polymeric foams but has not<br />

been investigated for trabecular bone.<br />

1. Introduction<br />

The current study entails a detailed experimental and<br />

numerical investigation of the inelastic behaviour of<br />

bovine trabecular bone (BTB) and a commercially<br />

available trabecular bone analogue material (PU foam,<br />

sawbones). Material behaviour under conditions of<br />

unconfined and confined compression is determined and<br />

a suitable inelastic constitutive formulation is identified.<br />

Specifically the following constitutive formulations are<br />

investigated: DP; MC; isotropic crushable foam (CFiso);<br />

volumetric crushable foam (CFvol). Following this, we<br />

investigate the surgical implantation of a tibial<br />

component (Genesis II, Smith&Nephew) into a sawbone<br />

tibia (composed of PU foam to replicate trabecular<br />

bone) to identify if material yield occurs.<br />

2. Materials and Methods<br />

Experimental: 15 mm cubic specimens of PU foam<br />

(ρ = 0.16 g/cm 3 ) and proximal tibial BTB were tested<br />

destructively in unconfined and confined (custom rig)<br />

uniaxial compression at a rate of 5 mm/min (Instron<br />

4467, Instron Corp., USA).<br />

Computational: 3D FE confined and unconfined<br />

uniaxial compression tests of PU and BTB were<br />

simulated (Abaqus v6.8). A 3D FE model was created<br />

to simulate surgical tibial component implantation into a<br />

sawbone tibia (#3402) (Fig.1B). Frictionless contact<br />

was assumed between the components.<br />

3. Results & Discussion<br />

Experimental and computational results for PU foam<br />

and BTB are shown in Fig.1A. Unconfined<br />

experimental results for PU (E = 35 MPa, σy = 1.5 MPa)<br />

and BTB (E = 364 MPa, σy = 10 MPa) are within the<br />

reported range for human trabecular bone [6] . Simulation<br />

of tibial component implantation results in a maximum<br />

computed stress of ~14 MPa (Fig.1B-C).<br />

60<br />

(A)<br />

Nominal Stress (MPa)<br />

Nominal Stress (MPa)<br />

Nominal Stress (MPa)<br />

Nominal Stress (MPa)<br />

3<br />

2<br />

1<br />

0<br />

5 53<br />

0 4 4<br />

2<br />

3 3<br />

0.1 0.2 0.2 0.3 0.3 0.4 0.4<br />

Nominal<br />

PU Nominal Strain<br />

Foam Confined Strain<br />

0.5 0.5 0.6 0.6<br />

Nominal Stress (MPa)<br />

2 2<br />

1<br />

1 1<br />

PU Foam Unconfined<br />

0 0<br />

0 0<br />

0.1 0.1 0.2<br />

0.2 0.2 0.3<br />

0.3 0.3 0.4<br />

0.4 0.4 0.5<br />

0.5 0.5<br />

Nominal<br />

Nominal Strain<br />

Strain<br />

Cfiso<br />

Cfiso<br />

Cfvol<br />

Cfvol<br />

MC<br />

MC<br />

DP<br />

DP<br />

Experimental<br />

Experimental<br />

0.6<br />

0.6 0.6<br />

Nominal Stress (MPa)<br />

Nominal Stress (MPa)<br />

Nominal Stress (MPa)<br />

Nominal Stress (MPa)<br />

Nominal Stress (MPa)<br />

BTB Unconfined<br />

0<br />

0<br />

5 0<br />

100<br />

100<br />

4<br />

80<br />

80<br />

3<br />

60<br />

60<br />

40 2<br />

40<br />

20<br />

20 1<br />

0.1<br />

0.1<br />

0.2 0.3<br />

0.2 0.3<br />

Nominal<br />

Nominal<br />

BTB Confined Strain<br />

Strain<br />

0.4<br />

0.4<br />

0<br />

0<br />

0 0.1 0.2 0.3<br />

0 0.1 0.1 0.2 0.3 0.2 0.4 0.3 0.5<br />

Nominal Strain<br />

Cfiso Cfvol Nominal<br />

Nominal<br />

MC DP Strain<br />

Strain<br />

Experimental<br />

CFiso CFvol MC DP Experimental<br />

CFiso CFvol MC DP Experimental<br />

Mises/σy 0.6<br />

(B) (C)<br />

Figure 1 (A) Unconfined and confined experimental and<br />

computational results for PU and BTB. (B) Schematic of<br />

tibial component implantation into a sawbone tibia (PU<br />

foam). (C) Tibial component implantation results.<br />

In unconfined compression all 4 plasticity models are<br />

calibrated to the experimental results (Fig.1A). Under<br />

both loading conditions only the CFiso and CFvol models<br />

demonstrate reasonable correlation with experimental<br />

results. The pressure dependent yield criteria in both CF<br />

models allow for accurate simulation of the inelastic<br />

behaviour of PU and BTB under confined compression.<br />

Our investigations suggest that for confined<br />

compression the MC and DP models are not appropriate<br />

for trabecular bone as the perfect plasticity type<br />

behaviour cannot be captured post yield.<br />

6. Conclusions<br />

To the authors knowledge these constitutive<br />

formulations have not previously been applied to<br />

trabecular bone and this is also the first study to<br />

investigate plastic deformation caused during tibial<br />

component implantation. Simulation of tibial<br />

component implantation results in trabecular stresses in<br />

excess of the σy of PU, highlighting the importance of<br />

modelling elasto-plastic material behaviour.<br />

8. References and Acknowledgements<br />

[1] Mercer (et al.), Acta Mater. 2:59, 2006. [2] Mullins (et<br />

al.), J.M.B.B.M. 2:460, 2009. [3] Wang (et al.), Bone 43:775,<br />

2008. [4] Desphande & Fleck 48:1253, 2000. [5] ABAQUS<br />

Analysis Theory Manual, 2010. [6] Li & Aspden, J. Bone<br />

Miner. Res. 12: 641, 1997.<br />

<strong>NUI</strong>G Scholarship, ICHEC.<br />

100<br />

100<br />

80<br />

80<br />

60<br />

60<br />

40<br />

40<br />

20<br />

20

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!