02.07.2013 Views

Electrical Power Systems

Electrical Power Systems

Electrical Power Systems

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

om ig. 4.6,<br />

Synchronous Machine: Steady State and Transient Operations 87<br />

ig. 4.6: Phasor diagram of a salient pole<br />

synchronous generator.<br />

|E| = |V| cos d + xdId The three-phase real power at the generator terminal is<br />

rom ig. 4.6,<br />

rom eqn. (4.26) and (4.27), we get<br />

Again from ig. 4.6,<br />

...(4.25)<br />

P = 3|V| |I a| cos q ...(4.26)<br />

|I a|cos q = I q cos d + I d sin d ...(4.27)<br />

|V| sin d = x qI q<br />

\ I q =<br />

rom eqn. (4.25), we get<br />

P = 3|V| (I q cos d + I d sin d ) ...(4.28)<br />

| |sin V<br />

x<br />

q<br />

d<br />

||| E - V|cos<br />

d<br />

Id =<br />

x<br />

rom eqn. (4.28), (4.29) and (4.30) we get,<br />

P3f = 3 + 3<br />

xd<br />

d<br />

| E|| V|<br />

2 ( xd - xq)<br />

sin d | V|<br />

sin 2d<br />

2 x x<br />

d q<br />

...(4.29)<br />

...(4.30)<br />

...(4.31)<br />

In eqn. (4.31), second term is known as the reluctance power. Note that equations (4.25) and<br />

(4.31) can be utilized for steady state analysis. Under transient conditions, xd takes on different<br />

values depending upon the transient time following the short circuit.<br />

Example 4.3: A 25 MVA, 13.8 kV, 50 Hz synchronous generator has a synchronous reactance of<br />

1.2 pu and a resistance of 0.02 pu calculate (a) the base voltage, base power and base impedance<br />

of the generator. (b) The actual value of the synchronous reactance (c) The actual winding<br />

resistance per phase (d) the total full load copper loss.<br />

Solution.<br />

(a) The base voltage is<br />

E B =<br />

13. 8<br />

= 7.967 kV.<br />

3

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!