02.07.2013 Views

Electrical Power Systems

Electrical Power Systems

Electrical Power Systems

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

358 <strong>Electrical</strong> <strong>Power</strong> <strong>Systems</strong><br />

\ Therefore,<br />

G =<br />

q<br />

+<br />

2pÎ0 x<br />

L<br />

NM<br />

q<br />

pÎ ( D-x) 2 0<br />

O<br />

QP<br />

\ G =<br />

q<br />

2 pÎ 0<br />

1 1<br />

+ volt/m<br />

x D - x<br />

... (14.4)<br />

The voltage gradient is a maximum at the surface of the conductor, where x = r. Substituting<br />

x = r in eqn. (14.4), we get<br />

q L1<br />

Gmax =<br />

+<br />

2 pÎ 0 NM r<br />

1 O volt/m<br />

D - rQP<br />

... (14.5)<br />

Since D is large compared with r, we can write D – r » D. Therefore,<br />

Gmax =<br />

q<br />

volt/m<br />

2pÎ 0 r<br />

...(14.6)<br />

The R.M.S. value of voltage gradient is given by<br />

as:<br />

G rms = G max<br />

2<br />

...(14.7)<br />

Potential difference V 12 between the conductors of a single phase line (chapter-3) is written<br />

I volt ...(14.8)<br />

HG KJ<br />

V12 =<br />

q<br />

pÎ0 ln D<br />

r<br />

Voltage from conductor to neutral is given as:<br />

Vn = V12 2 =<br />

q D<br />

ln<br />

2pÎ0 r<br />

Eqn. (14.9) can be written as:<br />

\<br />

I<br />

HG KJ<br />

Vn<br />

q D<br />

= ln<br />

r 2pÎ 0 r r<br />

q<br />

2pÎ 0 r<br />

=<br />

r<br />

\ G max =<br />

r<br />

Vn<br />

D<br />

r<br />

ln HG I KJ<br />

Vn<br />

D<br />

r<br />

ln HG I KJ<br />

I volt ... (14.9)<br />

HG KJ<br />

volt/m ... (14.10)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!