02.07.2013 Views

Electrical Power Systems

Electrical Power Systems

Electrical Power Systems

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

44 <strong>Electrical</strong> <strong>Power</strong> <strong>Systems</strong><br />

Solution:<br />

e j /<br />

ig. 2.22<br />

<br />

HG<br />

D = 14 m<br />

d = 0.5 m<br />

r = 1.725 cm<br />

1725<br />

DS = r¢ 20 d = 7788 ´ ´ ´<br />

100<br />

205<br />

3 14<br />

.<br />

3<br />

.<br />

(.) m<br />

= 0.2207 m<br />

D eq » (D ab D bc D ca ) 1/3 = (14 × 14 × 28) 1/3 = 17.638 m<br />

<br />

HG<br />

L = 0.4605 log D<br />

\ L = 0.876 mH/km.<br />

D<br />

eq<br />

s<br />

I<br />

KJ<br />

17. 638<br />

= 0.4605 log<br />

02207 .<br />

I KJ<br />

14 /<br />

I mH/km HG KJ<br />

Example 2.12: A 50 Hz, single phase transmission line and a telephone line are parallel to each<br />

other as shown in ig. 2.23. The transmission line carries an rms current of 200 amp. Assume<br />

zero current flows in the telephone wires. ind the magnitude of the voltage per km induced in<br />

the telephone line.<br />

Solution:<br />

ig. 2.23<br />

2 2<br />

Da1 = 4 + 3 = 5 m<br />

2 2<br />

Da2 = 6 + 3 = 6.708 m<br />

rom ig. 2.23, the flux linkages between conductor T 1 and T 2 due to current I a is<br />

<br />

HG<br />

l12 (Ia ) = 0.4605 Ialog Da2<br />

D<br />

a1<br />

I<br />

KJ mWb–T/km

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!