10.07.2015 Views

Quantitative structural analyses and numerical modelling of ...

Quantitative structural analyses and numerical modelling of ...

Quantitative structural analyses and numerical modelling of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

128 J. FRANĚK ET AL.Behrmann, J.H. & Mainprice, D., 1987. Deformation mechanismsin a high-temperature quartz-feldspar mylonite: evidencefor super-plastic flow in the lower crust. Tectonophysics,140, 297–305.Boullier, A.M. & Gueguen, Y., 1975. SP-mylonites; origin <strong>of</strong>some mylonites by superplastic flow. Contributions to Mineralogy<strong>and</strong> Petrology, 50, 93–104.Brown, W.L. & Parsons, I., 1989. Alkali feldspars: orderingrates, phase transformations <strong>and</strong> behaviour diagrams forigneous rocks. Mineralogical Magazine, 53, 25–42.Carswell, D.A. & OÕBrien, P.J., 1993. Thermobarometry <strong>and</strong>geotectonic significance <strong>of</strong> high-pressure granulites – examplesfrom the Moldanubian Zone <strong>of</strong> the Bohemian Massif inLower Austria. Journal <strong>of</strong> Petrology, 34, 427–459.Casey, M., Kunze, K. & Olgaard, D.L., 1998. Texture <strong>of</strong> Solnh<strong>of</strong>enlimestone deformed to high strains in torsion. Journal<strong>of</strong> Structural Geology, 20, 255–267.Cashman, K.V. & Ferry, J.M., 1988. Crystal size distribution(CSD) in rocks <strong>and</strong> the kinetics <strong>and</strong> dynamics <strong>of</strong> crystallization– III. Metamorphic crystallization. Contributions toMineralogy <strong>and</strong> Petrology, 99, 401–415.Coggon, R. & Holl<strong>and</strong>, T., 2002. Mixing properties <strong>of</strong> phengiticmicas <strong>and</strong> revised garnet-phengite thermobarometers. Journal<strong>of</strong> Metamorphic Geology, 20, 683–696.Cooke, R.A., 2000. High-pressure ⁄ temperature metamorphismin the St. Leonhard Granulite Massif, Austria: evidence fromintermediate pyroxene-bearing granulites. International Journal<strong>of</strong> Earth Sciences, 89, 647–651.DellÕAngelo, L.N., Tullis, J. & Yund, R.A., 1987. Transitionfrom dislocation creep to melt-enhanced diffusion creepin fine-grained granitic aggregates. Tectonophysics, 139, 325–332.DeVore, G.W., 1959. Role <strong>of</strong> minimum interfacial free energy indetermining the macroscopic features <strong>of</strong> mineral assemblages.I. The model. Journal <strong>of</strong> Geology, 67, 211–227.Diener, J.F.A., White, R.W. & Powell, R., 2008. Granulite faciesmetamorphism <strong>and</strong> subsolidus fluid-absent reworking,Strangways Range, Arunta Block, central Australia. Journal<strong>of</strong> Metamorphic Geology, 26, 603–622.Fiala, J., Mateˇjovska´, O.&Vanˇkova´, V., 1987. Moldanubiangranulites: source material <strong>and</strong> petrogenetic considerations.Neues Jahrbuch fur Mineralogie, Abh<strong>and</strong>lungen, 157, 133–165.Finger, F., Cooke, R., Janousˇek, V. et al., 2003. Petrogenesis <strong>of</strong>the south Bohemian granulites: the importance <strong>of</strong> crystal-meltrelationships. Journal <strong>of</strong> the Czech Geological Society, 48, 44–45.Flin, D., 1969. Grain contacts in crystalline rocks. Lithos, 2, 361–370.Franeˇk, J., Schulman, K. & Lexa, O., 2006. Kinematic <strong>and</strong>rheological model <strong>of</strong> exhumation <strong>of</strong> high pressure granulites inthe Variscan orogenic root: example <strong>of</strong> the Blansky´ les granulite,Bohemian Massif, Czech Republic. Mineralogy <strong>and</strong>Petrology, 86, 253–276.Franeˇk, J., Schulman, K., Lexa, O., Tomek, C. & Edel, J.B.,2011. Model <strong>of</strong> syn-convergent extrusion <strong>of</strong> orogenic lowercrust in the core <strong>of</strong> the Variscan belt: implications forexhumation <strong>of</strong> high-pressure rocks in large hot orogens.Journal <strong>of</strong> Metamorphic Geology, 29, 53–78.Franke, W., 2000. The mid-European segment <strong>of</strong> the Variscides:tectonostratigraphic units, terrane boundaries <strong>and</strong> plate tectonicevolution. Geological Society Special Publication, 179,35–56.Friedl, G., Cooke, R., Finger, F., McNaughton, N.J. & Fletcher,I., 2003. U-Pb SHRIMP dating <strong>and</strong> trace element investigationson multiple zoned zircons from a South-Bohemiangranulite. Journal <strong>of</strong> the Czech Geological Society, 48, 51.Fuchs, G., 1976. Zur Entwicklung der Bo¨ hmischen Masse.Jahrbuch des Geologischen Bundesanstalts, 119, 45–61.Garlick, S.R. & Gromet, L.P., 2004. Diffusion creep <strong>and</strong> partialmelting in high temperature mylonitic gneisses, Hope Valleyshear zone, New Engl<strong>and</strong> Appalachians, USA. Journal <strong>of</strong>Metamorphic Geology, 22, 45–62.Gayk, T. & Kleinschrodt, R., 2000. Hot contacts <strong>of</strong> garnetperidotites in middle ⁄ upper crustal levels: new constraints onthe nature <strong>of</strong> the late Variscan high-T ⁄ low-P event in theMoldanubian (Central Vosges ⁄ NE France). Journal <strong>of</strong> MetamorphicGeology, 18, 293–305.H<strong>and</strong>y, M., 1990. The solid state flow <strong>of</strong> polymineralic rocks.Journal <strong>of</strong> Geophysical Research, 95, 8647–8661.Hasalová, P., Sˇtı´pska´, P., Powell, R., Schulmann, K., Janousˇek,V. & Lexa, O., 2008a. Transforming mylonitic metagranite byopen-system interactions during melt flow. Journal <strong>of</strong> MetamorphicGeology, 26, 55–80.Hasalová, P., Schulmann, K., Lexa, O. et al., 2008b. Origin <strong>of</strong>migmatites by deformation-enhanced melt infiltration <strong>of</strong>orthogneiss: a new model based on quantitative micro<strong>structural</strong>analysis. Journal <strong>of</strong> Metamorphic Geology, 26, 29–53.Hay, R.S. & Evans, B., 1987. Chemically induced grain boundarymigration in calcite: temperature dependence, phenomenology,<strong>and</strong> possible applications to geologic systems.Contributions to Mineralogy <strong>and</strong> Petrology, 97, 127–141.Higgins, M.D., 1998. Origin <strong>of</strong> anorthosite by textural coarsening:quantitative measurements <strong>of</strong> a natural sequence <strong>of</strong>textural development. Journal <strong>of</strong> Petrology, 39, 1307–1323.Holl<strong>and</strong>, T. & Powell, R., 1998. An internally consistent thermodynamicdata set for phases <strong>of</strong> petrological interest. Journal<strong>of</strong> Metamorphic Geology, 16, 309–343.Holl<strong>and</strong>, T. & Powell, R., 2003. Activity–composition relationsfor phases in petrological calculations: an asymmetric multicomponentformulation. Contributions to Mineralogy <strong>and</strong>Petrology, 145, 492–501.Jakesˇ, P., 1997. Melting in high-P region – case <strong>of</strong> Bohemiangranulites. Acta Universitatis Carolinae, Geologica, 41, 113–125.Janousˇek, V. & Holub, F.V., 2007. The causal link between HP-HT metamorphism <strong>and</strong> ultrapotassic magmatism in collisionalorogens: case study from the Moldanubian Zone <strong>of</strong> theBohemian Massif. Proceedings <strong>of</strong> the Geologists Association,118, 75–86.Janousˇek, V., Finger, F., Roberts, M., Fry´da, J., Pin, C. &Dolejsˇ, D., 2004. Deciphering the petrogenesis <strong>of</strong> deeplyburied granites: whole-rock geochemical constraints onthe origin <strong>of</strong> largely undepleted felsic granulites from theMoldanubian Zone <strong>of</strong> the Bohemian Massif. Transactions <strong>of</strong>the Royal Society <strong>of</strong> Edinburgh – Earth Sciences, 95, 141–159.Janousˇek, V., Gerdes, A., Vrána, S. et al., 2006. Low-pressuregranulites <strong>of</strong> the Lisˇov Massif, Southern Bohemia: viseanmetamorphism <strong>of</strong> Late Devonian plutonic arc rocks. Journal<strong>of</strong> Petrology, 47, 705–744.Jiang, Z., Prior, D.J. & Wheeler, J., 2000. Albite crystallographicpreferred orientation <strong>and</strong> grain misorientation distribution ina low-grade mylonite: implications for granular flow. Journal<strong>of</strong> Structural Geology, 22, 1663–1674.Knipe, R.J., 1989. Deformation mechanisms – recognitionfrom natural tectonites. Journal <strong>of</strong> Structural Geology, 11,127–146.Kodym, O., 1972. Multiphase deformation in the Blanský lesgranulite massif (South Bohemia). Krystalinikum, 9, 91–105.Kosˇler, J., Kelley, S.P., Vance, D. & Svojtka, M., 1999. Independentdating <strong>of</strong> cooling <strong>and</strong> decompression <strong>of</strong> high graderocks in the southern Bohemian Massif with Ar-Ar, Sm-Nd<strong>and</strong> U-Pb techniques. Journal <strong>of</strong> Conference Abstracts, 4, 39.Kotkova´, J. & Harley, S.L., 1999. Formation <strong>and</strong> evolution <strong>of</strong>high-pressure leucogranulites: experimental constraints <strong>and</strong>unresolved issues. Physics <strong>and</strong> Chemistry <strong>of</strong> the Earth Part A –Solid Earth <strong>and</strong> Geodesy, 24, 299–304.Kretz, R., 1969. On the spatial distribution <strong>of</strong> crystals in rocks.Lithos, 2, 39–65.Kro¨ ner, A., OÕBrien, P.J., Nemchin, A.A. & Pidgeon, R.T.,2000. Zircon ages for high pressure granulites from SouthBohemia, Czech Republic, <strong>and</strong> their connection to Carboniferoushigh temperature processes. Contributions to Mineralogy<strong>and</strong> Petrology, 138, 127–142.Ó 2010 Blackwell Publishing Ltd366

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!