09.12.2012 Views

Food Lipids: Chemistry, Nutrition, and Biotechnology

Food Lipids: Chemistry, Nutrition, and Biotechnology

Food Lipids: Chemistry, Nutrition, and Biotechnology

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

56. R. C. Clough, A. L. Matthis, S. R. Barnum, <strong>and</strong> J. G. Jaworski. Purification <strong>and</strong><br />

characterization of 3-ketoacyl–acyl carrier protein synthase III from spinach. A condensing<br />

enzyme utilizing acetyl–coenzyme A to initiate fatty acid synthesis. J. Biol.<br />

Chem. 267:20992 (1992).<br />

57. M. Siggaard-Andersen, M. Wissenbach, J. Chuch, I. Svendsen, J. G. Olsen, <strong>and</strong> P.<br />

von Wettstein-Knowles. The fabJ-encoded �-ketoacyl–[acyl carrier protein] synthase<br />

IV from Escherichia coli is sensitive to cerulenin <strong>and</strong> specific for short-chain substrates.<br />

Proc. Natl. Acad. Sci. U.S.A. 91:11027 (1994).<br />

58. J. Fuhrmann <strong>and</strong> K. P. Heise. Factors controlling medium-chain fatty acid synthesis<br />

in plastids from maturing Cuphea embryos. Z. Naturforsch. 48:616 (1993).<br />

59. F. M. Brück, M. Brummel, R. Schuch, <strong>and</strong> F. Spener. In-vitro evidence for feed-back<br />

regulation of �-ketoacyl–acyl carrier protein synthase III in medium-chain fatty acid<br />

biosynthesis. Planta 198:271 (1996).<br />

60. A. D. McCarthy <strong>and</strong> D. G. Hardie. The multifunctional polypeptide chains of rabbitmammary<br />

fatty-acid synthase. Stoichiometry of active sites <strong>and</strong> active-site mapping<br />

using limited proteolysis. Eur. J. Biochem. 130:185 (1983).<br />

61. N. Morishima <strong>and</strong> A. Ikai. Active site organization of bacteria type I fatty acid synthetase.<br />

J. Biochem. 102:1451 (1987).<br />

62. M. W. Gray. The evolutionary origins of organelles. Trends Genet. 5:294 (1989).<br />

63. K. A. Walker <strong>and</strong> J. L. Harwood. Localization of chloroplastic fatty acid synthesis<br />

de novo in the stroma. Biochem. J. 226:551 (1985).<br />

64. S. Brody, S. Mikolajczyk, <strong>and</strong> L. Chuman. Studies on de novo fatty acid synthesis<br />

in mitochondria. In: Plant Lipid Biochemistry, Structure <strong>and</strong> Utilization (P. J. Quinn<br />

<strong>and</strong> J. L. Harwood, eds.). Portl<strong>and</strong> Press, London, 1990, pp. 117–119.<br />

65. A. R. Slabas <strong>and</strong> T. Fawcett. The biochemistry <strong>and</strong> molecular biology of plant lipid<br />

biosynthesis. Plant Mol. Biol. 19:169 (1992).<br />

66. P. K. Stumpf <strong>and</strong> T. Shimakata. Molecular structures <strong>and</strong> functions of plant fatty acid<br />

synthetase enzymes. In: Biosynthesis <strong>and</strong> Function of Plant <strong>Lipids</strong> (W. W. Thomson,<br />

J. B. Mudd, <strong>and</strong> M. Gibbs, eds.). American Society of Plant Physiologists, Rockville,<br />

MD, 1983, pp. 1–15.<br />

67. T. Shimakata <strong>and</strong> P. K. Stumpf. The purification <strong>and</strong> function of acetyl coenzyme A:<br />

acyl carrier protein transacylase. J. Biol. Chem. 258:3592 (1983).<br />

68. B. Liedvogel <strong>and</strong> R. Bäuerle. Fatty acid synthesis in chloroplasts from mustard<br />

(Sinapis alba L.) cotyledons: Formation of acetyl coenzyme A by intraplastid glycolytic<br />

enzymes <strong>and</strong> a pyruvate dehydrogenase complex. Planta 169:481 (1986).<br />

69. Q. Qi, K. F. Kleppinger-Sparace, <strong>and</strong> S. A. Sparace. The utilization of glycolytic<br />

intermediates as precursors for fatty acid biosynthesis by pea root plastids. Plant<br />

Physiol. 107:413 (1995).<br />

70. H. K. Lichtenthaler <strong>and</strong> A. Golz. Chemical regulation of acetyl-CoA formation <strong>and</strong><br />

de novo fatty acid biosynthesis in plants. In: Plant Lipid Metabolism (J. C. Kader<br />

<strong>and</strong> P. Mazliak, eds.). Kluwer Academic Publishers, Dordrecht, 1995, pp. 58–60.<br />

71. R. Douce, C. Alban, E.-P. Journet, <strong>and</strong> J. Joyard. Biochemical properties of plastids<br />

isolated from cauliflower buds <strong>and</strong> sycamore cells <strong>and</strong> of their envelope membranes.<br />

In: Physiology, Biochemistry, <strong>and</strong> Genetics of Nongreen Plastids (C. D. Boyer, J. C.<br />

Shannon, <strong>and</strong> R. C. Hardison, eds.). American Society of Plant Physiologists, Rockville,<br />

MD, 1989, pp. 99–119.<br />

72. N. Kuhn, M. J. Knauf, <strong>and</strong> P. K. Stumpf. Subcellular localization of acetyl–CoA<br />

synthetase in leaf protoplasts of Spinacia oleracea. Arch. Biochem. Biophys. 209:441<br />

(1981).<br />

73. R. G. Roughan <strong>and</strong> J. B. Ohlrogge. On the assay of acetyl–CoA synthetase in chloroplasts<br />

<strong>and</strong> leaf extracts. Anal. Biochem. 216:77 (1994).<br />

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!