05.01.2013 Views

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

3.1. Electroweak Precision Observables 97<br />

elements of <strong>the</strong>se matrices, that is <strong>the</strong> modifications to <strong>the</strong> flavor universal coupl<strong>in</strong>gs.<br />

In general <strong>the</strong> Z coupl<strong>in</strong>g to light quarks is modified as well. However, because of<br />

<strong>the</strong> UV localization of <strong>the</strong> correspond<strong>in</strong>g bulk fields, <strong>the</strong> SM expressions (g q<br />

L )11 =<br />

T q<br />

3 − s<strong>in</strong>W θW Qq and (g q<br />

R )11 = − s<strong>in</strong>2 θW Qq are excellent approximations and <strong>the</strong><br />

production can assumed to be SM like. 1With <strong>the</strong> help of <strong>the</strong> ZMA (2.180) and (2.184),<br />

we obta<strong>in</strong><br />

g b L ≡ � g d �<br />

L 33 →<br />

�<br />

− 1<br />

2 + s<strong>in</strong>2 � �<br />

θW<br />

1 −<br />

3<br />

m2 Z<br />

2M 2 F<br />

KK<br />

2 (cbL )<br />

�<br />

5 + 2cbL<br />

L −<br />

3 + 2cbL 2(3 + 2cbL )<br />

��<br />

(3.10)<br />

+ m2 b<br />

2M 2 ⎡<br />

�<br />

⎣<br />

1 1<br />

KK 1 − 2cbR F 2 (cbR ) − 1 + F 2 (cbR )<br />

�<br />

+<br />

3 + 2cbR<br />

� |(Yd)3i|<br />

i=1,2<br />

2<br />

|(Yd)33| 2<br />

1 1<br />

1 − 2cdi F 2 (cbR )<br />

⎤<br />

⎦ ,<br />

g b R ≡ � g d �<br />

R 33 → s<strong>in</strong>2 �<br />

θW<br />

1 −<br />

3<br />

m2 Z<br />

2M 2 F<br />

KK<br />

2 (cbR )<br />

�<br />

5 + 2cbR<br />

L −<br />

3 + 2cbR 2(3 + 2cbR )<br />

��<br />

(3.11)<br />

− m2 b<br />

2M 2 ⎡<br />

�<br />

⎣<br />

1 1<br />

KK 1 − 2cbL F 2 (cbL ) − 1 + F 2 (cbL )<br />

�<br />

+<br />

3 + 2cbL<br />

� |(Yd)i3| 2<br />

|(Yd)33| 2<br />

1 1<br />

1 − 2cQi F 2 (cbL )<br />

⎤<br />

⎦ ,<br />

<strong>in</strong> which <strong>the</strong> notation cbL ≡ cQ3 and cbR ≡ cd3 is <strong>in</strong>troduced. The terms <strong>in</strong> <strong>the</strong> second<br />

l<strong>in</strong>es <strong>in</strong> (3.10) and (3.11) come from <strong>the</strong> ZMA expressions of <strong>the</strong> δ matrices and are<br />

fur<strong>the</strong>r suppressed by mb/mZ, so that <strong>the</strong> lead<strong>in</strong>g terms are controlled by <strong>the</strong> zero<br />

mode profiles F (cbL ) and F (cbR ).<br />

i=1,2<br />

The ratio of <strong>the</strong> width of <strong>the</strong> Z 0 -boson decay <strong>in</strong>to bottom quarks and <strong>the</strong> total hadronic<br />

width R 0 b , <strong>the</strong> bottom quark left-right asymmetry parameter Ab, and <strong>the</strong> forward-<br />

backward asymmetry for bottom quarks A 0,b<br />

FB , are given <strong>in</strong> terms of <strong>the</strong> left- and<br />

right-handed bottom quark coupl<strong>in</strong>gs as [145]<br />

R 0 b =<br />

Ab =<br />

�<br />

1 +<br />

4 � � q<br />

q=u,d (gL )2 + (g q<br />

R )2�<br />

�<br />

η2ηQCD ηQED (1 − 6zb)(gb L − gb R )2 + (gb L + gb R )2�<br />

�−1 2 √ 1 − 4zb<br />

gb L + gb R<br />

gb L − gb R<br />

�<br />

gb L + g<br />

1 − 4zb + (1 + 2zb)<br />

b R<br />

g b L − gb R<br />

�2<br />

3<br />

, A0,b<br />

FB =<br />

4 Ae Ab , (3.12)<br />

where ηQCD = 0.9954 and ηQED = 0.9997 are QCD and QED radiative correction<br />

factors. The factor η2 = 0.99386 takes <strong>in</strong>to account <strong>the</strong> recently published fermionic<br />

two loop contributions computed <strong>in</strong> [147], which are <strong>the</strong> only reason for <strong>the</strong> significant<br />

pull of R 0 b <strong>in</strong> Figure 3.1. The parameter zb ≡ m 2 b (mZ)/m 2 Z = 0.997·10−3 describes <strong>the</strong><br />

effects of <strong>the</strong> non-zero bottom quark mass. As expla<strong>in</strong>ed above, left- and right-handed<br />

coupl<strong>in</strong>gs of <strong>the</strong> light quarks, g q<br />

L and gq<br />

R , and <strong>the</strong> asymmetry parameter of <strong>the</strong> electron,<br />

Ae can be assumed SM like and we fix <strong>the</strong>se quantities to <strong>the</strong>ir SM values. In what<br />

follows we will employ gu L = 0.34674, gu R = −0.15470, gd L = −0.42434, gd R = 0.077345<br />

and Ae = 0.1473 for <strong>the</strong> SM predictions [146, Table G3].<br />

1 For electrons as <strong>in</strong>itial state <strong>the</strong> modifications are even smaller.<br />

,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!