05.01.2013 Views

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

3.2. RS GIM Work<strong>in</strong>g 107<br />

with ωZ LL = ωZ RR = 1 <strong>in</strong> <strong>the</strong> m<strong>in</strong>imal model and if <strong>the</strong> electroweak gauge group is<br />

extended <strong>in</strong> order to comprise a custodial symmetry, ωZ LL = 0 and ωZ RR = 3c2w s2 , as <strong>in</strong><br />

w<br />

(3.15) and (3.16), compare also [167, App. B].<br />

Corrections to b → sℓ + ℓ− aris<strong>in</strong>g from CRS ℓ3 and ˜ CRS ℓ3 are ei<strong>the</strong>r O(mµmb/M 2 KK<br />

O(v4 /M 4 KK ) and will consequentially also be ignored <strong>in</strong> <strong>the</strong> numerical analysis.<br />

The branch<strong>in</strong>g ratios for <strong>the</strong> Bq → µ + µ − decays can be expressed as<br />

B(Bq → µ + µ − ) = G2 F α2 m3 Bqf 2 BqτBq 64π3s4 w<br />

�<br />

� (qb) �<br />

λ �<br />

t<br />

2<br />

�<br />

1 − 4m2 µ<br />

m2 Bq<br />

�<br />

4m2 µ<br />

×<br />

m2 �<br />

�CA − C<br />

Bq<br />

′ �<br />

�<br />

A<br />

2 + m 2 �<br />

Bq<br />

1 − 4m2 µ<br />

m 2 Bq<br />

� ����<br />

mb CS − mq C ′ S<br />

mb + mq<br />

�<br />

�<br />

�<br />

�<br />

2 �<br />

) or<br />

,<br />

(3.36)<br />

where mBq, fBq, and τBq are <strong>the</strong> mass, decay constant, and lifetime of <strong>the</strong> Bq meson<br />

and λ (pr)<br />

q<br />

≡ V ∗<br />

qpVqr. The electromagnetic coupl<strong>in</strong>g α enter<strong>in</strong>g <strong>the</strong> branch<strong>in</strong>g ratios<br />

should be evaluated at mZ. The expressions for <strong>the</strong> coefficients CA,S and C ′ A,S read<br />

CA = cA − s4wc 2 wm2 Z<br />

α2λ (qb)<br />

�<br />

C<br />

t<br />

RS<br />

ℓ1<br />

�<br />

− CRS ℓ2<br />

, C ′ A = s4wc 2 wm2 Z<br />

α2λ (qb)<br />

�<br />

˜C RS<br />

ℓ1<br />

t<br />

− ˜ C RS<br />

�<br />

ℓ2 ,<br />

CS = 2s4wc 2 wm2 Z<br />

α2mbλ (qb)<br />

C<br />

t<br />

RS<br />

l3 , C′ S = 2s4wc 2 wm2 Z<br />

α2mqλ (qb)<br />

t<br />

˜C RS<br />

ℓ3 ,<br />

(3.37)<br />

where cA = 0.96 ± 0.02 denotes <strong>the</strong> SM contribution to <strong>the</strong> Wilson coefficient of <strong>the</strong><br />

axial-vector current [169, 170], and <strong>the</strong> coefficients CRS conta<strong>in</strong> <strong>the</strong> 13<br />

ℓ1−3 and ˜ CRS ℓ1−3<br />

or 23 elements of <strong>the</strong> mix<strong>in</strong>g matrices <strong>in</strong> <strong>the</strong> case of Bd → µ + µ − and Bs → µ + µ − ,<br />

respectively. 7<br />

The SM branch<strong>in</strong>g ratios of <strong>the</strong> Bq → µ + µ − decay channels evaluate to [171, 172]<br />

B(Bd → µ + µ − )SM = (1.0 ± 0.1) · 10 −10 , (3.38)<br />

B(Bs → µ + µ − )SM = (3.2 ± 0.2) · 10 −9 . (3.39)<br />

These predictions are obta<strong>in</strong>ed by normaliz<strong>in</strong>g <strong>the</strong> decay rates to <strong>the</strong> well-measured<br />

meson mass differences (∆mq)exp. This elim<strong>in</strong>ates <strong>the</strong> dependence on CKM parameters<br />

and <strong>the</strong> bulk of <strong>the</strong> hadronic uncerta<strong>in</strong>ties by trad<strong>in</strong>g <strong>the</strong> decay constants for<br />

less uncerta<strong>in</strong> hadronic parameters. The dom<strong>in</strong>ant source of error is never<strong>the</strong>less still<br />

provided by <strong>the</strong> hadronic <strong>in</strong>put.<br />

The result is plotted <strong>in</strong> Figure 3.5 and shows aga<strong>in</strong> very good agreement with <strong>the</strong><br />

current bounds, which however start to cut <strong>in</strong>to <strong>the</strong> parameter space. Experimental<br />

bounds refer to <strong>the</strong> very precise limit from LHCb measurements, obta<strong>in</strong>ed <strong>in</strong>clud<strong>in</strong>g<br />

<strong>the</strong> full 2011 dataset [166], and <strong>the</strong> two-sided bound from CDF [168] respectively. It is<br />

7 While CA and C ′ A are scale <strong>in</strong>dependent, <strong>the</strong> coefficients CS and C ′ S have a non-trivial RG<br />

evolution. We can ignore that because <strong>the</strong>y are numerically <strong>in</strong>significant.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!