05.01.2013 Views

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

120 Chapter 3. Solv<strong>in</strong>g <strong>the</strong> <strong>Flavor</strong> <strong>Problem</strong> <strong>in</strong> <strong>Strongly</strong> <strong>Coupled</strong> <strong>Theories</strong><br />

<strong>the</strong> Wilson coefficients C4 and C5 <strong>in</strong>duced by <strong>the</strong> second term <strong>in</strong> (3.61) will become<br />

of <strong>the</strong> same size as <strong>the</strong> terms which cancel out and thus re<strong>in</strong>troduce <strong>the</strong> flavor problem.<br />

The value of vIR depends sensitively on <strong>the</strong> model<strong>in</strong>g of <strong>the</strong> extended scalar sector,<br />

but with reference to (2.102) and Section 3.6, we can anticipate that it can be written<br />

as<br />

vIR = L<br />

g2 s<br />

2NCc2 θs2 v<br />

θ<br />

2 4<br />

M 2 KK<br />

ξ = 2παsL<br />

NCc 2 θ s2 θ<br />

v 2 4<br />

M 2 KK<br />

ξ, (3.64)<br />

<strong>in</strong> which v4 denotes <strong>the</strong> vev of <strong>the</strong> scalar which couples to <strong>the</strong> strong sector (ei<strong>the</strong>r<br />

Hu and Hd <strong>in</strong> (3.60) or S <strong>in</strong> (3.59)), NC = 3 <strong>the</strong> number of colors, gs = gs5/ √ 2πrc<br />

<strong>the</strong> strong coupl<strong>in</strong>g constant and ξ some for now unspecified order one factor, parameteriz<strong>in</strong>g<br />

<strong>the</strong> effects from model<strong>in</strong>g <strong>the</strong> extended scalar sector. With <strong>the</strong> additional<br />

assumption that v4 is proportional to <strong>the</strong> electroweak break<strong>in</strong>g scale (which will turn<br />

out to be true for <strong>the</strong> scenario (3.60)), <strong>the</strong> contributions <strong>in</strong>duced by <strong>the</strong> BCs are sup-<br />

pressed by v 2 /M 2 KK<br />

with respect to <strong>the</strong> gluon KK mode contributions to C4.<br />

The comb<strong>in</strong>ed contributions to <strong>the</strong> Wilson coefficients of <strong>the</strong> operators (3.18) from<br />

<strong>the</strong> KK towers of <strong>the</strong> gluon (2.185) and <strong>the</strong> axigluon (3.63) read 9<br />

C G+A<br />

1<br />

�C G+A<br />

1<br />

C G+A<br />

4<br />

= 2πL<br />

M 2 � �<br />

αs<br />

1 −<br />

KK 2<br />

1<br />

��<br />

1<br />

NC c2 �<br />

θ<br />

+ 1<br />

s 2 θ<br />

= 2πL<br />

M 2 KK<br />

+ 1<br />

c 2 θ<br />

( � ∆D)12 ⊗ ( � ∆D)12 − 2( � ∆D)12 ⊗ (�εD)12<br />

(3.65)<br />

(�εD)12 ⊗ (�εD)12 − 1<br />

�<br />

vIR<br />

s<br />

2 2 + vIR<br />

2 θ (∆D) 2 12 − 2(∆D)12(εD)12 + 1<br />

s2 (εD)<br />

θ<br />

2 �<br />

12<br />

�<br />

,<br />

� �<br />

αs<br />

1 −<br />

2<br />

1<br />

��<br />

1<br />

NC s2 �<br />

(<br />

θ<br />

� ∆d)12 ⊗ ( � ∆d)12 − 2( � ∆d)12 ⊗ (�εd)12<br />

(�εd)12 ⊗ (�εd)12 − 1<br />

�<br />

vIR<br />

c<br />

2 2 + vIR<br />

2 θ (∆d) 2 12 − 2(∆d)12(εd)12 + 1<br />

c2 (εd)<br />

θ<br />

2 �<br />

12<br />

�<br />

,<br />

�<br />

= − NCC RS<br />

5 = 2πL<br />

M 2 2αs<br />

KK<br />

+ 1<br />

s 2 θ c2 θ<br />

(�εD)12 ⊗ (�εd)12 − 1<br />

�<br />

vIR<br />

2 2 + vIR<br />

− 1<br />

c2 (<br />

θ<br />

� ∆D)12 ⊗ (�εd)12 − 1<br />

s2 θ<br />

( � ∆d)12 ⊗ (�εD)12<br />

(∆D)12(∆d)12 − 1<br />

s2 (∆D)12(εd)12<br />

θ<br />

− 1<br />

c2 (∆d)12(εD)12 +<br />

θ<br />

1<br />

c2 θs2 (εD)12(εd)12<br />

θ<br />

9 The electroweak contributions are not repeated as <strong>the</strong>y are unchanged from (3.20).<br />

� �<br />

,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!