05.01.2013 Views

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

80 Chapter 2. The Randall Sundrum Model and its Holographic Interpretation<br />

<strong>the</strong> unitary diagonalization matrices U q q<br />

R and UL [70], which read<br />

(U q<br />

L )ij = (uq)ij<br />

(U q<br />

R )ij = (wq)ij e iφj<br />

⎧<br />

F (cQi<br />

⎪⎨<br />

)<br />

, i ≤ j ,<br />

F (cQj )<br />

⎪⎩<br />

F (cQj )<br />

, i > j ,<br />

F (cQi )<br />

⎧<br />

F (cqi<br />

⎪⎨<br />

)<br />

, i ≤ j ,<br />

F (cqj )<br />

⎪⎩<br />

F (cqj )<br />

, i > j .<br />

F (cqi )<br />

⎛<br />

⎜<br />

uq = ⎜<br />

−<br />

⎜<br />

⎝<br />

1<br />

∗<br />

(Mq) 21<br />

(Mq) ∗<br />

11<br />

(Mq) ∗<br />

31<br />

(Mq) ∗<br />

11<br />

(Mq) 21<br />

(Mq) 11<br />

−<br />

⎛<br />

⎜<br />

1<br />

⎜<br />

wq = ⎜<br />

⎜−<br />

⎜<br />

⎝<br />

(Mq) 12<br />

(Mq) 11<br />

(Mq) 13<br />

(Mq) 11<br />

1<br />

∗<br />

(Yq) 23<br />

(Yq) ∗<br />

33<br />

(Mq) ∗<br />

12<br />

(Mq) ∗<br />

11<br />

1<br />

− (Yq) 32<br />

(Yq) 33<br />

⎞<br />

(Yq) 13<br />

(Yq) ⎟<br />

33 ⎟<br />

(Yq) ⎟<br />

23 ⎟<br />

(Yq) ⎟ ,<br />

33 ⎟<br />

⎠<br />

1<br />

(2.159)<br />

(Yq) ∗<br />

31<br />

(Yq) ∗<br />

33<br />

(Yq) ∗<br />

32<br />

(Yq) ∗<br />

⎞<br />

⎟ ,<br />

33 ⎟<br />

⎠<br />

1<br />

(2.160)<br />

<strong>in</strong> which <strong>the</strong> phase factor<br />

e i φj<br />

�<br />

= sgn F (cQj )F (cfj )�e −i θj ,<br />

⎛<br />

⎞<br />

arg(det Y q) − arg((Mq)11)<br />

θ = ⎝ arg((Mq)11) − arg((Yq)33) ⎠ ,<br />

arg((Yq)33)<br />

(2.161)<br />

appears as a consequence of <strong>the</strong> convention to choose <strong>the</strong> diagonal entries of U q<br />

L real.<br />

The CKM matrix VCKM = (U u L )† U d L can <strong>the</strong>n be expressed <strong>in</strong> terms of <strong>the</strong> zero mode<br />

profiles and <strong>the</strong> 5D Yukawa coupl<strong>in</strong>gs alone. The Wolfenste<strong>in</strong> parameters read<br />

|Vus|<br />

λ = �<br />

|Vud| 2 + |Vus| 2<br />

, A = 1<br />

� �<br />

� Vcb �<br />

� �<br />

λ �Vus<br />

� , ¯ρ − i¯η = −V ∗ udVub V ∗<br />

cdVcb , (2.162)<br />

so that we obta<strong>in</strong> from (2.159)<br />

|F (cQ1 )|<br />

λ =<br />

|F (cQ2 )|<br />

�<br />

�<br />

�<br />

(Md) 21<br />

� −<br />

(Md) 11<br />

(Mu)<br />

�<br />

�<br />

21 �<br />

|F (cQ2<br />

(Mu) � , A =<br />

11<br />

)|3<br />

|F (cQ1 )|2 |F (cQ3 )|<br />

�<br />

�<br />

� (Yd) 23<br />

�<br />

� (Yd) 33<br />

��<br />

�<br />

� (Md) 21<br />

� (Md) 11<br />

¯ρ − i¯η =<br />

(Yd) 33 (Mu) 31 − (Yd) 23 (Mu) 21 + (Yd) 13 (Mu) 11<br />

(Yd) 33 (Mu) 11<br />

� (Yd) 23<br />

(Yd) 33<br />

− (Yu) 23<br />

(Yu) 33<br />

� � (Md) 21<br />

(Md) 11<br />

− (Mu) 21<br />

(Mu) 11<br />

− (Yu) 23<br />

(Yu) 33<br />

− (Mu) 21<br />

(Mu) 11<br />

� .<br />

� 2<br />

�<br />

�<br />

�<br />

�<br />

�<br />

� ,<br />

�<br />

�<br />

�<br />

(2.163)<br />

Note, that ρ and η are <strong>in</strong> lead<strong>in</strong>g order <strong>in</strong>dependent of <strong>the</strong> zero mode profiles and thus<br />

of <strong>the</strong> quark localization. S<strong>in</strong>ce <strong>the</strong> Yukawa coupl<strong>in</strong>gs are not supposed to add any

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!