05.01.2013 Views

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

100 Chapter 3. Solv<strong>in</strong>g <strong>the</strong> <strong>Flavor</strong> <strong>Problem</strong> <strong>in</strong> <strong>Strongly</strong> <strong>Coupled</strong> <strong>Theories</strong><br />

negative, so that one f<strong>in</strong>ds to lead<strong>in</strong>g order (see [114] for details and <strong>the</strong> derivation)<br />

g b �<br />

L = − 1<br />

2 + s2 � �<br />

w<br />

1 +<br />

3<br />

m2 Z<br />

2M 2 F<br />

KK<br />

2 (cbL ) 5 + 2cbL<br />

3 + 2cbL 2(3 + 2cbL )<br />

�<br />

+ m2 b<br />

2M 2 �<br />

1 F 2 (cbR<br />

KK 1 − 2cbR<br />

)<br />

3 + 2cbR<br />

g b R = s2 w<br />

3<br />

− m2 b<br />

2M 2 KK<br />

Here, δg b R /δgb L<br />

�<br />

− 1 ,<br />

(3.15)<br />

�<br />

1 − m2 Z<br />

2M 2 F<br />

KK<br />

2 (cbR )<br />

�<br />

3c2 w<br />

3 + 2cbR s2 5 + 2cbR<br />

L −<br />

w 2(3 + 2cbR )<br />

��<br />

(3.16)<br />

⎡<br />

�<br />

⎣<br />

1 1<br />

1 − 2cbL F 2 (cbL ) − 1 + F 2 (cbL )<br />

�<br />

+<br />

3 + 2cbL<br />

� |(Yd)i3| 2<br />

|(Yd)33| 2<br />

1 1<br />

1 − 2cQi F 2 (cbL )<br />

⎤<br />

⎦ .<br />

> 1, and <strong>the</strong> right-handed corrections will lead to a worse <strong>the</strong>n 3σ<br />

discrepancy for some parameter po<strong>in</strong>ts. Despite <strong>the</strong> mislead<strong>in</strong>g scatterplot however,<br />

more than 99% of <strong>the</strong> parameter po<strong>in</strong>ts are <strong>in</strong> <strong>the</strong> 3σ CL ellipsis <strong>in</strong> Figure 3.3.<br />

tend to slightly improve <strong>the</strong> sit-<br />

Interest<strong>in</strong>gly, with <strong>the</strong> new fit, <strong>the</strong> corrections to gb L<br />

uation compared to <strong>the</strong> SM. Both is evident from <strong>the</strong> plot on <strong>the</strong> right hand side<br />

of Figure 3.3, which shows <strong>the</strong> same set of parameter po<strong>in</strong>ts as <strong>the</strong> left plot for <strong>the</strong><br />

coupl<strong>in</strong>gs <strong>in</strong> <strong>the</strong> custodially protected RS model (3.15) and (3.16). Note, that an<br />

improvement can be achieved for small MKK, which should be contrasted with <strong>the</strong><br />

model without custodial symmetry discussed above, <strong>in</strong> which a large new physics scale<br />

is preferred <strong>in</strong> order to not spoil <strong>the</strong> fit. Also, <strong>the</strong> reparametrization <strong>in</strong>variance can<br />

be used <strong>in</strong> favor of an IR shift of <strong>the</strong> left-handed profiles for even better agreement<br />

with <strong>the</strong> measurements. 2<br />

i=1,2<br />

This shows that <strong>the</strong> custodial protection is sufficient to protect <strong>the</strong> T parameter and<br />

allows for an even slight attenuation of <strong>the</strong> tension from <strong>the</strong> fit to R 0 b , , Ab and A 0,b<br />

FB .<br />

Even though o<strong>the</strong>r solutions exist, we will assume that <strong>the</strong> custodial protection <strong>in</strong> <strong>the</strong><br />

SM is not broken by <strong>the</strong> underly<strong>in</strong>g <strong>the</strong>ory, <strong>in</strong> order not to be pushed to a corner<br />

of parameter space or hav<strong>in</strong>g to resort to a large MKK scale for agreement with<br />

electroweak precision tests.<br />

3.2 RS GIM Work<strong>in</strong>g<br />

The present status of flavor physics is characterized by a large number of precision<br />

results on B, D and K decays which are <strong>in</strong> tantaliz<strong>in</strong>g agreement with <strong>the</strong> SM picture<br />

of flavor and CP violation. In <strong>the</strong> RS model, <strong>the</strong> KK modes generate tree-level<br />

FCNCs, which are ultimatively caused by <strong>the</strong> flavor non-universal coupl<strong>in</strong>gs <strong>in</strong> (1.34),<br />

and are suppressed by <strong>the</strong> mix<strong>in</strong>g angles <strong>in</strong> (1.34) or equivalently by <strong>the</strong> zero-mode<br />

profiles (2.150) <strong>in</strong> <strong>the</strong> context of <strong>the</strong> RS-GIM mechanism.<br />

In <strong>the</strong> follow<strong>in</strong>g it will be demonstrated how <strong>the</strong> RS-GIM mechanism successfully suppresses<br />

FCNCs by us<strong>in</strong>g observables <strong>in</strong>volv<strong>in</strong>g b quarks, which have a large composite<br />

2 It should be po<strong>in</strong>ted out, that <strong>in</strong> <strong>the</strong> custodial model without <strong>the</strong> PLR symmetry, many parameter<br />

po<strong>in</strong>ts end up <strong>in</strong> <strong>the</strong> 2σ ellipsis <strong>in</strong> Figure 3.3. S<strong>in</strong>ce this is not a consequence of a physically motivated<br />

parameter choice, but depends on <strong>the</strong> random relative size of <strong>the</strong> right-handed localization parameters<br />

and Yukawa matrices, we will not discuss this scenario.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!