05.01.2013 Views

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

After <strong>in</strong>tegration by parts, one f<strong>in</strong>ds [112]<br />

� |G|(LGauge+LGF + LMass) =<br />

� �<br />

rc<br />

Aν ∂<br />

2<br />

2 η µν �<br />

− 1 − 1<br />

ξ<br />

+Aφ<br />

�<br />

− e−2σ<br />

r2 ∂<br />

c<br />

2 + ξ<br />

r4 c<br />

�<br />

∂ µ ∂ ν − ∂φ<br />

e −2σ ∂ 2 φe−2σ − e−4σ<br />

r2 M<br />

c<br />

2 A<br />

2.3. Profiles of Gauge Bosons 55<br />

e−2σ r2 ∂φη<br />

c<br />

µν + M 2 Ae −2σ<br />

�<br />

Aµ<br />

�<br />

Aφ<br />

�<br />

. (2.53)<br />

Boundary terms from partial <strong>in</strong>tegration vanish as long as <strong>the</strong> fields have ei<strong>the</strong>r Dirichlet<br />

or Neumann BCs and <strong>the</strong> fields are well behaved at 4D <strong>in</strong>f<strong>in</strong>ity.<br />

We will once more change notation, because it is sensible for <strong>the</strong> numerics to have all<br />

expressions <strong>in</strong> dimensionless variables. Therefore, let t ≡ MKK z = MKK e σ /k with<br />

MKK = ɛk def<strong>in</strong>ed <strong>in</strong> (1.54), and ɛ ≡ ΛIR/ΛUV. The l<strong>in</strong>e element <strong>in</strong> this t-notation<br />

reads<br />

ds 2 =<br />

�<br />

ɛ<br />

�2 �ηµνdx<br />

t<br />

µ dx ν − M −2<br />

KKdt2� , (2.54)<br />

and <strong>the</strong> positions of <strong>the</strong> branes are now <strong>in</strong>tuitively expressed by ratios of scales, t = ɛ<br />

for <strong>the</strong> UV and t = 1 for <strong>the</strong> IR brane. In addition, we def<strong>in</strong>e <strong>the</strong> volume of <strong>the</strong> extra<br />

dimension as L = − ln ɛ = krcπ ≈ 36. F<strong>in</strong>ally, we redef<strong>in</strong>e <strong>the</strong> scalar component of<br />

AM,<br />

A5(xµ, t) = ɛ<br />

Aφ(xµ, φ) , (2.55)<br />

t rc<br />

<strong>in</strong> order to adjust <strong>the</strong> mass dimension and simplify <strong>the</strong> follow<strong>in</strong>g calculations. With<br />

<strong>the</strong>se conventions, equation (2.53) reads<br />

�<br />

S = d 4 �<br />

x dφ � |G| (LGauge + LGF) = 1<br />

�<br />

d<br />

2<br />

4 � π<br />

x rcdφ AMK<br />

−π<br />

MN<br />

ξ AN<br />

<strong>in</strong> which<br />

⎛<br />

K MN<br />

ξ<br />

= ⎝<br />

�<br />

∂2 − M 2<br />

KKt∂t 1<br />

t ∂t<br />

� �<br />

η µν −<br />

= 1<br />

2<br />

�<br />

1 − 1<br />

ξ<br />

d 4 x<br />

2π rc<br />

L<br />

� 1<br />

ɛ<br />

dt<br />

t<br />

AMK MN<br />

ξ AN , (2.56)<br />

�<br />

∂ µ ∂ ν + ɛ2<br />

t 2 M 2 A ηµν 0<br />

0 − ∂2 + ξM 2 1 ɛ2<br />

KK∂tt∂t t − t2 M 2 A<br />

(2.57)<br />

is <strong>the</strong> <strong>in</strong>verse of <strong>the</strong> Feynman propagator <strong>in</strong> Rξ gauge. After a Fourier transformation<br />

of <strong>the</strong> coord<strong>in</strong>ates of <strong>the</strong> non-compact directions, pµ = i∂µ, <strong>the</strong> follow<strong>in</strong>g two equations<br />

⎞<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!