05.01.2013 Views

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

150 Chapter 4. The Asymmetry <strong>in</strong> Top Pair Production<br />

Follow<strong>in</strong>g [222], we <strong>in</strong>troduce <strong>the</strong> charge-asymmetric (a) and -symmetric (s) averaged<br />

differential cross sections. In <strong>the</strong> former case, we def<strong>in</strong>e<br />

�<br />

dσa 1 dσ<br />

≡<br />

d cos θ 2<br />

p¯p→t¯tX<br />

�<br />

dσp¯p→¯ttX<br />

− , (4.23)<br />

d cos θ d cos θ<br />

with dσ p¯p→t¯tX /d cos θ given <strong>in</strong> (4.19). The correspond<strong>in</strong>g expression for <strong>the</strong> chargesymmetric<br />

averaged differential cross section dσs/d cos θ is simply obta<strong>in</strong>ed from <strong>the</strong><br />

above by chang<strong>in</strong>g <strong>the</strong> m<strong>in</strong>us <strong>in</strong>to a plus sign. The notation <strong>in</strong>dicates that <strong>in</strong> <strong>the</strong><br />

process labeled by <strong>the</strong> superscript p¯p → t¯tX (p¯p → ¯ttX) <strong>the</strong> angle θ corresponds to<br />

<strong>the</strong> scatter<strong>in</strong>g angle of <strong>the</strong> top (antitop) quark <strong>in</strong> <strong>the</strong> partonic CM frame. Us<strong>in</strong>g (4.23)<br />

one can derive various physical observables <strong>in</strong> t¯t production. For example, <strong>the</strong> total<br />

hadronic cross section is given by<br />

σ t¯t =<br />

� 1<br />

The total t¯t charge asymmetry can <strong>the</strong>n be def<strong>in</strong>ed as<br />

−1<br />

� 1<br />

A t 0<br />

c ≡ � 1<br />

0<br />

d cos θ dσs<br />

. (4.24)<br />

d cos θ<br />

d cos θ dσa<br />

d cos θ<br />

d cos θ dσs<br />

d cos θ<br />

. (4.25)<br />

S<strong>in</strong>ce QCD is symmetric under charge conjugation, it allows to identify<br />

dσp¯p→¯ttX �<br />

�<br />

�<br />

�<br />

d cos θ<br />

= dσp¯p→t¯tX<br />

�<br />

�<br />

�<br />

�<br />

d cos θ<br />

, (4.26)<br />

� cos θ=c<br />

� cos θ=−c<br />

for any fixed value c. As mentioned <strong>in</strong> <strong>the</strong> previous section, <strong>the</strong> charge asymmetry<br />

can <strong>the</strong>n be understood as a forward-backward asymmetry<br />

� 1<br />

A t c = A t 0<br />

FB ≡ � 1<br />

0<br />

σa = αs<br />

m 2 t<br />

d cos θ dσp¯p→t¯tX<br />

d cos θ −<br />

� 0<br />

d cos θ dσp¯p→t¯tX<br />

d cos θ +<br />

i,j<br />

4m 2 t<br />

−1<br />

� 0<br />

−1<br />

d cos θ dσp¯p→t¯tX<br />

d cos θ<br />

d cos θ dσp¯p→t¯tX<br />

d cos θ<br />

= σa<br />

. (4.27)<br />

σs<br />

It makes sense to express contributions to <strong>the</strong> symmetric and asymmetric cross section<br />

already at <strong>the</strong> level of <strong>the</strong> hard scatter<strong>in</strong>g kernels,<br />

σs = αs<br />

m2 �<br />

� s<br />

t i,j<br />

4m2 dˆs<br />

s<br />

t<br />

ffij<br />

� �<br />

� � 4m2 t<br />

ˆs/s, µf Sij . (4.28)<br />

ˆs<br />

�<br />

� s dˆs<br />

s ffij<br />

� �<br />

� � 4m2 t<br />

ˆs/s, µf Aij , (4.29)<br />

ˆs

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!