05.01.2013 Views

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

76 Chapter 2. The Randall Sundrum Model and its Holographic Interpretation<br />

The mass eigenvalues xn can <strong>the</strong>n be found by solv<strong>in</strong>g<br />

�<br />

det 1 − v2<br />

2M 2 � Q<br />

Sn (1<br />

KK<br />

− ) �−1 �Y<br />

q C q n(1 − ) � −S q n(1 − ) �−1 †<br />

�Y<br />

q C Q n (1 − �<br />

) = 0 , (2.141)<br />

and subsequentially <strong>the</strong> correspond<strong>in</strong>g a-vectors can be derived from (2.140).<br />

Bulk Profiles<br />

Consider<strong>in</strong>g aga<strong>in</strong> a simple bulk fermion with BCs exam<strong>in</strong>ed at <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of <strong>the</strong><br />

last section one can already anticipate a lot of <strong>the</strong> correct solution for <strong>the</strong> complete<br />

model. In <strong>the</strong> case of non-<strong>in</strong>teger order α, <strong>the</strong> general solution (2.120) can be expressed<br />

solely by first order Bessel functions, because<br />

so that<br />

Yα(x) =<br />

1<br />

�<br />

�<br />

cos(απ)Jα(x) − J−α(x) , (2.142)<br />

s<strong>in</strong>(απ)<br />

f n L/R (t) = √ �<br />

t a L,R<br />

n J 1<br />

c∓ − b<br />

2<br />

L,R<br />

�<br />

n J 1<br />

−c± . (2.143)<br />

2<br />

Note, that <strong>in</strong> this basis <strong>the</strong> EOM fix aL n = aR n , but bn L = −bn R . The value of <strong>the</strong><br />

coefficients as well as <strong>the</strong> mass eigenvalues are fixed by <strong>the</strong> BCs, which <strong>in</strong> <strong>the</strong> case of<br />

Neumann BCs <strong>in</strong> <strong>the</strong> UV give<br />

bn<br />

an<br />

= Jc+ 1 (xnɛ)<br />

2<br />

J 1<br />

−c− (xnɛ)<br />

2<br />

. (2.144)<br />

It is <strong>the</strong>refore straightforward to f<strong>in</strong>d <strong>the</strong> solutions for <strong>the</strong> components of <strong>the</strong> matrices<br />

SQ,q n (t) and CQ,q n (t) <strong>in</strong> this basis, if we choose to fix <strong>the</strong> coefficients <strong>in</strong> <strong>the</strong> UV and<br />

use <strong>the</strong> <strong>in</strong>formation on <strong>the</strong> IR brane <strong>in</strong> order to derive <strong>the</strong> mass eigenvalues. They<br />

will be direct generalizations of (2.143) with (2.143), because <strong>the</strong>y only differ <strong>in</strong> <strong>the</strong><br />

IR. <strong>Flavor</strong> is completely encoded <strong>in</strong> <strong>the</strong> choice of <strong>the</strong> localization parameters cQiand , so that we can omit flavor <strong>in</strong>dices and f<strong>in</strong>d <strong>in</strong> agreement with [58, 59]<br />

cqi<br />

<strong>in</strong> which<br />

C Q,q<br />

�<br />

Lɛt<br />

n (t) = Nn(cQ,q)<br />

S Q,q<br />

n (t) = ±Nn(cQ,q)<br />

π f + n (t, cQ,q) ,<br />

� Lɛt<br />

π f − n (t, cQ,q) , (2.145)<br />

f ± n (t, c) = J − 1<br />

2 −c(xnɛ) J ∓ 1<br />

2 +c(xnt) ± J 1<br />

2 +c(xnɛ) J ± 1<br />

2 −c(xnt) . (2.146)<br />

This motivates <strong>the</strong> <strong>in</strong>troduction of <strong>the</strong> extra m<strong>in</strong>us sign <strong>in</strong> cQ,q = ±MQ,q/k, because<br />

it allows for a compact notation <strong>in</strong> <strong>the</strong> case of Neumann UV BCs and regardless of <strong>the</strong><br />

solution implies that cQ,q < −1/2 will always mean UV localization and cQ,q > −1/2<br />

IR localization. However, <strong>in</strong> order to obta<strong>in</strong> a profile for c + 1/2 ∈ �, one must rely

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!