05.01.2013 Views

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

20 Chapter 1. Introduction: <strong>Problem</strong>s beyond <strong>the</strong> Standard Model<br />

Here {κ = (κ − , κ 0 ), �κ} and {h = (h − , h 0 ), η} denote each five Goldstone bosons from<br />

<strong>the</strong> break<strong>in</strong>g G/H. Now assume that <strong>the</strong> diagonal subgroup F = SU(3)diag of G is<br />

gauged, so that <strong>the</strong> k<strong>in</strong>etic part of (1.35) becomes<br />

Lk<strong>in</strong> = (Dµφ1) † (D µ φ1) + (Dµφ2) † (D µ φ2) (1.37)<br />

with Dµ = ∂µ − ig T a A a µ, a = 1, . . . , 8. This is an explicit break<strong>in</strong>g of <strong>the</strong> subgroup H,<br />

so that only I = H ∩ F = SU(2)diag (generated by <strong>the</strong> T a s with <strong>the</strong> Pauli matrices<br />

<strong>in</strong> <strong>the</strong> upper left corner) rema<strong>in</strong>s unbroken. The <strong>in</strong>teraction terms from (1.37) can be<br />

written as<br />

�<br />

i<br />

�<br />

|Dµφi| ∋ Tr g 2 (A a µT a ) 2 (φ1φ † †<br />

1 + φ2φ 2 )<br />

�<br />

, (1.38)<br />

where g is <strong>the</strong> weak coupl<strong>in</strong>g constant <strong>in</strong> this model and (ignor<strong>in</strong>g <strong>the</strong> s<strong>in</strong>glet η)<br />

φ1φ † †<br />

1 + φ2φ 2 =<br />

�<br />

h † h<br />

0<br />

0<br />

f 2 − h † �<br />

.<br />

h<br />

(1.39)<br />

And, if we denote <strong>the</strong> new gauge bosons by X and <strong>the</strong> SM ones as usual, we f<strong>in</strong>d <strong>in</strong><br />

<strong>the</strong> mass eigenbasis<br />

so that<br />

A a µT a = 1<br />

√ 2<br />

�<br />

Tr g 2 (A a µT a ) 2 (φ1φ † †<br />

1 + φ2φ 2 )<br />

�<br />

⎛<br />

B<br />

⎜<br />

⎝<br />

0 µ + X8 µ<br />

√3<br />

W − µ<br />

X 0<br />

µ<br />

W + µ<br />

X 8 µ<br />

√3 − B 0 µ<br />

X + µ<br />

X 0 µ<br />

X − µ<br />

−2<br />

√ 3 X 8 µ<br />

= g2<br />

�<br />

2 8<br />

f<br />

2 3 X8 µX µ8 + X 0<br />

µX µ0 + X + µ X µ−<br />

�<br />

⎞<br />

⎟<br />

⎠ , (1.40)<br />

+ g2<br />

2 h2 � W + µ W µ− + 2B 0 µB µ0 − X + µ X µ− − 2X 8 µX µ8�<br />

+ 2g2<br />

√ 3 h 2 X 8 µB µ0 . (1.41)<br />

Two th<strong>in</strong>gs become evident from this result. First, <strong>the</strong> five gauge bosons correspond<strong>in</strong>g<br />

to <strong>the</strong> broken T a s, a = 1, . . . , 5 have eaten <strong>the</strong> κ fields from (1.36) and ga<strong>in</strong> masses<br />

proportional to <strong>the</strong> scale f, while <strong>the</strong> rema<strong>in</strong><strong>in</strong>g three gauge bosons will become<br />

massive if <strong>the</strong> Higgs field h acquires a vev. Second, <strong>the</strong> coupl<strong>in</strong>gs to <strong>the</strong> Higgs <strong>in</strong><br />

<strong>the</strong> second l<strong>in</strong>e of (1.41) are of <strong>the</strong> same magnitude but of opposite sign between <strong>the</strong><br />

new gauge fields and <strong>the</strong> weak gauge fields. This leads to a cancellation (between<br />

equal sp<strong>in</strong> fields), which will assure that no quadratic divergent loop diagrams appear<br />

<strong>in</strong> <strong>the</strong> <strong>the</strong>ory. The reason is, that if one covariant derivative <strong>in</strong> (1.37) was replaced<br />

by Dµ → ∂µ, all GBs of <strong>the</strong> correspond<strong>in</strong>g scalar would be exact. Thus, only gauge<br />

<strong>in</strong>teractions <strong>in</strong>clud<strong>in</strong>g both scalars φ1 and φ2 break <strong>the</strong> shift symmetry and can give

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!