05.01.2013 Views

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

k<strong>in</strong>ematic <strong>in</strong>variants<br />

4.2. The Forward-Backward Asymmetry <strong>in</strong> <strong>the</strong> SM 149<br />

ˆs = (p1 + p2) 2 , t1 = (p1 − p3) 2 − m 2 t , u1 = (p2 − p3) 2 − m 2 t . (4.17)<br />

The partonic cross section can <strong>the</strong>n be described as a function of ˆs, t1 and u1 and<br />

momentum conservation at Born level implies ˆs + t1 + u1 = 0. S<strong>in</strong>ce <strong>the</strong> number<br />

of top quarks scattered <strong>in</strong> forward (backward) direction is given by <strong>in</strong>tegrat<strong>in</strong>g <strong>the</strong><br />

differential cross section over <strong>the</strong> angle θ <strong>in</strong>cluded by �p1 and �p3 <strong>in</strong> <strong>the</strong> respective<br />

ranges, we express t1 and u1 <strong>in</strong> terms of θ and <strong>the</strong> top-quark velocity β,<br />

t1 = − ˆs<br />

2 (1 − β cos θ) , u1 = − ˆs<br />

(1 + β cos θ) ,<br />

2<br />

β = � 1 − ρ , ρ = 4m2 t<br />

ˆs<br />

The hadronic differential cross section may <strong>the</strong>n be written as<br />

dσ p¯p→t¯tX<br />

d cos θ<br />

= αs<br />

m 2 t<br />

�<br />

i,j<br />

� s<br />

4m 2 t<br />

. (4.18)<br />

dˆs<br />

s ffij<br />

� �<br />

� � 4m2 t<br />

ˆs/s, µf Kij , cos θ, µf , (4.19)<br />

ˆs<br />

where µf denotes <strong>the</strong> factorization scale and ffij denote <strong>the</strong> parton lum<strong>in</strong>osity functions<br />

<strong>in</strong>troduced <strong>in</strong> (3.113). The lum<strong>in</strong>osities for ij = q¯q, ¯qq are understood to be<br />

summed over all species of light quarks, and <strong>the</strong> functions f i/p(x, µf ) (f i/¯p(x, µf ))<br />

are <strong>the</strong> universal non-perturbative PDFs, which describe <strong>the</strong> probability of f<strong>in</strong>d<strong>in</strong>g<br />

<strong>the</strong> parton i <strong>in</strong> <strong>the</strong> proton (antiproton) with longitud<strong>in</strong>al momentum fraction x. The<br />

hard-scatter<strong>in</strong>g kernels Kij(ρ, cos θ, µf ) are related to <strong>the</strong> partonic cross sections and<br />

can be expanded <strong>in</strong> αs,<br />

Kij(ρ, cos θ, µf ) =<br />

∞�<br />

n=0<br />

� �<br />

αs<br />

n<br />

K<br />

4π<br />

(n)<br />

ij (ρ, cos θ, µf ) . (4.20)<br />

At lead<strong>in</strong>g order, only <strong>the</strong> diagrams <strong>in</strong> (4.16) contribute, and one f<strong>in</strong>ds<br />

K (0) πβρ CF<br />

q¯q = αs<br />

8 Nc<br />

= αs<br />

πβρ<br />

16<br />

CF<br />

Nc<br />

K (0) πβρ<br />

gg = αs<br />

8(N 2 c − 1)<br />

πβρ<br />

= αs<br />

8(N 2 c − 1)<br />

�<br />

t2 1 + u2 1<br />

ˆs 2 + 2m2 �<br />

t<br />

ˆs<br />

�<br />

1 + β 2 cos 2 θ + 4m2 �<br />

t<br />

, (4.21)<br />

ˆs<br />

�<br />

ˆs<br />

CF<br />

2 � �<br />

t2 1 + u<br />

− Nc<br />

t1u1<br />

2 1<br />

ˆs 2 + 4m2t ˆs − 4m4 �<br />

t<br />

t1u1<br />

�<br />

4CF<br />

1 − β2 cos2 �<br />

− Nc<br />

(4.22)<br />

θ<br />

�<br />

1�<br />

� 2 2 4m<br />

× 1 − β cos θ +<br />

2<br />

2 t<br />

ˆs −<br />

16m4 t<br />

ˆs 2�1 − β2 cos2 θ �<br />

�<br />

.<br />

The factors Nc = 3 and CF = 4/3 are <strong>the</strong> usual color factors and K (0)<br />

¯qq = K (0)<br />

q¯q <strong>in</strong> <strong>the</strong><br />

SM, because <strong>the</strong>y are related by replac<strong>in</strong>g cos θ with − cos θ <strong>the</strong> coefficients.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!