05.01.2013 Views

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

16 Chapter 1. Introduction: <strong>Problem</strong>s beyond <strong>the</strong> Standard Model<br />

Any Yukawa coupl<strong>in</strong>g can thus be generated with a fundamental parameter λ = O(1),<br />

based on <strong>the</strong> choice of <strong>the</strong> mix<strong>in</strong>g angles<br />

s<strong>in</strong> ϕL = d Λγ<br />

TC Λ<br />

mχ<br />

1−γ<br />

ETC and s<strong>in</strong> ϕR = ˜ d Λ˜γ<br />

TC Λ<br />

m˜χ<br />

1−˜γ<br />

ETC , (1.30)<br />

and <strong>the</strong>refore, ultimatively on <strong>the</strong> anomalous dimensions of B and B c . Here, <strong>in</strong> contrast<br />

to WTC, even for very large values of ΛETC ∼ MPlanck, also <strong>the</strong> top mass can<br />

be expla<strong>in</strong>ed, given that <strong>the</strong> correspond<strong>in</strong>g anomalous dimension is γ < 2.<br />

Ano<strong>the</strong>r virtue of partial compositeness becomes evident if one generalizes to 3 generations<br />

of SM quarks. In that case each SM quark has a set of composite partners<br />

Bi, Bc i , i = 1 . . . 3. The composites have different anomalous dimensions, so that <strong>the</strong><br />

correspond<strong>in</strong>g effective Yukawa matrices (shown here for <strong>the</strong> up-type quarks) read<br />

⎛<br />

s<strong>in</strong> ϕuL 0 0<br />

Y = ⎝<br />

0 s<strong>in</strong> ϕcL 0<br />

0 0 s<strong>in</strong> ϕtL<br />

⎞ ⎛<br />

s<strong>in</strong> ϕuR 0 0<br />

⎠ λ ⎝<br />

0 s<strong>in</strong> ϕcR 0<br />

0 0 s<strong>in</strong> ϕtR<br />

⎞<br />

⎠ , (1.31)<br />

where λ is assumed to be an anarchic order one matrix <strong>in</strong> straight generalization of<br />

λ <strong>in</strong> (1.29). In analogy to <strong>the</strong> Yukawa coupl<strong>in</strong>gs <strong>in</strong> (1.27), <strong>the</strong>re might be fur<strong>the</strong>r<br />

bosonic technicolor resonances, which couple to <strong>the</strong> composite fermions, for example<br />

L ∋ g � Bi γµρ µ Bi + B c<br />

i γµρ µ B c� i , (1.32)<br />

which, after diagonalization of <strong>the</strong> mass mix<strong>in</strong>gs, leads to <strong>the</strong> coupl<strong>in</strong>gs of <strong>the</strong> SM<br />

fermions<br />

with<br />

⎛<br />

s<strong>in</strong> ϕ<br />

gL = g ⎝<br />

2 uL 0 0<br />

L ∋ (gL) ij ψ i<br />

L γµρ µ ψ j<br />

L + (gR) ij ψ i<br />

R γµρ µ ψ j<br />

R , (1.33)<br />

0 s<strong>in</strong> ϕ 2 cL 0<br />

0 0 s<strong>in</strong> ϕ 2 tL<br />

⎞<br />

⎛<br />

s<strong>in</strong> ϕ<br />

⎠ , gR = g ⎝<br />

2 uR 0 0<br />

0 s<strong>in</strong> ϕ2 cR 0<br />

0 0 s<strong>in</strong> ϕ2 ⎞<br />

⎠ .<br />

tR<br />

(1.34)<br />

and although <strong>the</strong>se coupl<strong>in</strong>gs are flavor diagonal, <strong>the</strong>y will have off-diagonal entries <strong>in</strong><br />

<strong>the</strong> basis <strong>in</strong> which <strong>the</strong> Yukawas are diagonal, because only matrices proportional to<br />

<strong>the</strong> identity commute with <strong>the</strong> unitary change of basis matrices. This leads to FCNCs.<br />

However, <strong>the</strong> correspond<strong>in</strong>g FCNCs are always suppressed by <strong>the</strong> same small mix<strong>in</strong>g<br />

angles which generate <strong>the</strong> Yukawa coupl<strong>in</strong>gs. Therefore, as long as <strong>the</strong> top does not<br />

participate, FCNCs are generically small <strong>in</strong> models with partial compositeness. S<strong>in</strong>ce<br />

Randall-Sundrum models with bulk fermions do have this feature, we will exam<strong>in</strong>e it<br />

<strong>in</strong> more detail <strong>in</strong> Section 2.5.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!