05.01.2013 Views

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

which are given by <strong>the</strong> overlap <strong>in</strong>tegrals<br />

(g A L )qi<br />

� 1 2π<br />

=<br />

Lɛ<br />

ɛ<br />

dt<br />

t χ(1)<br />

A<br />

�<br />

× tan θ a (Q)†<br />

i<br />

(g A � 1 2π dt<br />

R)qi =<br />

Lɛ ɛ t χ(1)<br />

A<br />

�<br />

×<br />

tan θ a (q)†<br />

i<br />

3.7. <strong>Flavor</strong> Observables and LHC Bounds 143<br />

C(Q)<br />

i (t) C (Q)<br />

i (t) a (Q)<br />

i<br />

C(q)<br />

i<br />

− cot θ a(q)†<br />

i<br />

S(q)<br />

i<br />

(3.118)<br />

�<br />

(t) S(q) (t) a(q) ,<br />

(3.119)<br />

(t) C(q)<br />

i (t) a(q)<br />

i − cot θ a(Q)†<br />

i S (Q)<br />

i (t) S (Q)<br />

i (t) a (Q)<br />

�<br />

i ,<br />

with q, Q = {u, d} and i = 1, 2, 3 denot<strong>in</strong>g <strong>the</strong> ith flavor. The left panel of Figure<br />

3.14 shows <strong>the</strong> 95% CL upper bound on σ B A obta<strong>in</strong>ed by ATLAS (black l<strong>in</strong>e) to<br />

our <strong>the</strong>ory predictions for resonant axigluon production for <strong>the</strong> parameter set used<br />

throughout this chapter. Scatter po<strong>in</strong>ts above <strong>the</strong> black curve would be disfavored by<br />

<strong>the</strong> data. Po<strong>in</strong>ts below mA 1 ≈ 2.5 TeV are generated, because <strong>the</strong> parameter set has a<br />

lower limit on <strong>the</strong> KK scale of MKK > 1 TeV, and <strong>the</strong> mass of <strong>the</strong> first axigluon resonance<br />

is given by (3.103). The width of <strong>the</strong> “band” quantifies <strong>the</strong> effect of a different<br />

localization of <strong>the</strong> electroweak s<strong>in</strong>glet top quark, which is flatly distributed between<br />

∈ [−0.5, 2] because we chose cu3 as <strong>the</strong> free parameter <strong>in</strong> generat<strong>in</strong>g <strong>the</strong> parameter<br />

cu3<br />

po<strong>in</strong>ts, see Appendix A for details. Parameter po<strong>in</strong>ts with an extreme IR localized tR<br />

are colored blue and <strong>the</strong> color changes to red <strong>the</strong> more <strong>the</strong> tR is shifted towards <strong>the</strong><br />

UV. S<strong>in</strong>ce <strong>the</strong> top is not reconstructed <strong>in</strong> <strong>the</strong> analysis, a fur<strong>the</strong>r IR localized tR lowers<br />

<strong>the</strong> value of <strong>the</strong> branch<strong>in</strong>g fraction <strong>in</strong> (3.114), so that <strong>the</strong> dijet bound becomes even<br />

weaker. Note, that no relocalization has been implemented <strong>in</strong> Figure 3.14, because<br />

we can already <strong>in</strong>fer, that <strong>the</strong> dijet bounds are weaker <strong>the</strong>n <strong>the</strong> ones from <strong>the</strong> flavor<br />

sector for all parameter po<strong>in</strong>ts.<br />

In <strong>the</strong> right panel of Figure 3.14, <strong>the</strong> mean values of our dataset for <strong>the</strong> branch<strong>in</strong>g<br />

ratios to <strong>the</strong> different quark flavors is listed. The dom<strong>in</strong>ance of <strong>the</strong> top branch<strong>in</strong>g<br />

ratio is clearly visible. Numerically, do<strong>in</strong>g <strong>the</strong> same analysis for <strong>the</strong> gluon, which<br />

corresponds to replac<strong>in</strong>g <strong>the</strong> profile χA by χG and tan θ → 1, cot θ → −1 <strong>in</strong> (3.118),<br />

will change <strong>the</strong> result<strong>in</strong>g branch<strong>in</strong>g fractions only at <strong>the</strong> permille level.<br />

This allows to adopt <strong>the</strong> bounds from <strong>the</strong> most recent ATLAS analysis on t¯t f<strong>in</strong>al<br />

states on <strong>the</strong> mass of a gluon KK mode for <strong>the</strong> axigluon KK modes [204]. The effect<br />

from <strong>the</strong> relocalization of <strong>the</strong> fermions will enhance <strong>the</strong> coupl<strong>in</strong>gs to right handed<br />

tops of both gluon and axigluon resonances by a factor p2 u(tan β = 1/2) = 15, but <strong>the</strong><br />

predicted rate for a resonance mass <strong>in</strong> <strong>the</strong> ballpark of mA 1 ≈ 2.5MKK is several orders<br />

of magnitude below <strong>the</strong> measured cross section, as shown <strong>in</strong> Figure 3.15, and can<br />

<strong>the</strong>refore not compete with <strong>the</strong> bounds from <strong>the</strong> flavor sector. However, this concerns<br />

<strong>the</strong> new physics amplitude squared, while <strong>the</strong> <strong>in</strong>terference with SM amplitudes may<br />

lead to an overall enhanced cross section <strong>in</strong>to top pairs. These effects will be discussed<br />

<strong>in</strong> detail <strong>in</strong> <strong>the</strong> next chapter.<br />

<strong>On</strong>e can draw <strong>the</strong> conclusion, that direct detection bounds on KK modes of gluons and<br />

axigluons are generally weaker than <strong>the</strong> strongest bounds from flavor physics, given<br />

<strong>the</strong> prejudice, that not a f<strong>in</strong>e-tuned set of parameters is <strong>the</strong> reason for an unexpected<br />

agreement with experiments.<br />

i<br />

i

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!