05.01.2013 Views

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

158 Chapter 4. The Asymmetry <strong>in</strong> Top Pair Production<br />

<strong>in</strong> which <strong>the</strong> operators are<br />

Q (V,8)<br />

q¯q,AB = (¯qγµT a PAq)(¯tγ µ T a PB t) ,<br />

Q (V,8)<br />

tū,AB = (ūγµT a PAt)(¯tγ µ T a PB u) ,<br />

Q (V,1)<br />

tū,AB = (ūγµPAt)(¯tγ µ PB u) ,<br />

Q (S,1)<br />

tū,AB = (ūPAt)(¯tPB u) , (4.46)<br />

and <strong>the</strong> sum over q (u) <strong>in</strong>volves all light (up-type) quark flavors. In addition, PL,R =<br />

(1 ∓ γ5)/2 project onto left- and right-handed chiral quark fields, and T a are <strong>the</strong><br />

generators of SU(3)C. The superscripts V and S (8 and 1) label vector and scalar<br />

(color-octet and -s<strong>in</strong>glet) contributions, respectively.<br />

Us<strong>in</strong>g <strong>the</strong> effective Lagrangian (4.45) it is straightforward to calculate <strong>the</strong> <strong>in</strong>terference<br />

between <strong>the</strong> tree-level matrix element describ<strong>in</strong>g s channel SM gluon exchange and <strong>the</strong><br />

s and t channel new-physics contributions aris<strong>in</strong>g from <strong>the</strong> Feynman graphs displayed<br />

<strong>in</strong> Figure 4.5. In terms of <strong>the</strong> follow<strong>in</strong>g comb<strong>in</strong>ations of Wilson coefficients<br />

C (P,a)<br />

ij,�<br />

= Re<br />

K (0) βρ CF<br />

tū,RS =<br />

32 Nc<br />

�<br />

C (P,a)<br />

ij,LL<br />

+ C(P,a)<br />

ij,RR<br />

�<br />

, C (P,a)<br />

ij,⊥<br />

= Re<br />

�<br />

C (P,a)<br />

ij,LR<br />

+ C(P,a)<br />

ij,RL<br />

�<br />

, (4.47)<br />

<strong>the</strong> result<strong>in</strong>g hard-scatter<strong>in</strong>g kernels take <strong>the</strong> form<br />

K (0)<br />

�<br />

βρ CF t2 1<br />

q¯q,RS =<br />

32 Nc ˆs C(V,8)<br />

q¯q,⊥ + u21 ˆs C(V,8)<br />

q¯q,� + m2 �<br />

t C (V,8)<br />

�<br />

q¯q,� + C(V,8)<br />

q¯q,⊥<br />

�<br />

, (4.48)<br />

��<br />

u2 1<br />

ˆs + m2 � � � �<br />

1<br />

t2 1<br />

t<br />

+<br />

ˆs + m2 �<br />

t C (S,1)<br />

�<br />

tū,⊥ .<br />

C<br />

Nc<br />

(V,8)<br />

tū,� − 2C(V,1)<br />

tū,�<br />

(4.49)<br />

Note, that per def<strong>in</strong>ition a factor of αs or αe has been absorbed <strong>in</strong> <strong>the</strong> Wilson coeffi-<br />

cients. As <strong>in</strong> (4.22), <strong>the</strong> coefficient K (0)<br />

by simply replac<strong>in</strong>g cos θ with − cos θ.<br />

¯qq,RS<br />

� (0) � (0)<br />

K ¯tu,RS is obta<strong>in</strong>ed from K<br />

q¯q,RS<br />

� (0) �<br />

K tū,RS<br />

After <strong>in</strong>tegrat<strong>in</strong>g over cos θ, one obta<strong>in</strong>s <strong>the</strong> LO corrections to <strong>the</strong> symmetric and<br />

asymmetric parts of <strong>the</strong> cross section def<strong>in</strong>ed <strong>in</strong> (4.28). In <strong>the</strong> case of <strong>the</strong> symmetric<br />

part it follows<br />

S (0) βρ<br />

uū,RS = (2 + ρ) ˆs<br />

216<br />

S (0)<br />

d ¯ βρ<br />

= (2 + ρ) ˆs<br />

d,RS 216<br />

�<br />

C (V,8)<br />

1<br />

uū,� + C(V,8)<br />

uū,⊥ +<br />

�<br />

C (V,8)<br />

d ¯ d,�<br />

3 C(V,8)<br />

tū,�<br />

− 2C(V,1)<br />

tū,�<br />

while <strong>the</strong> asymmetric part <strong>in</strong> <strong>the</strong> partonic CM frame reads<br />

A (0)<br />

uū,RS = β2 ρ<br />

144 ˆs<br />

A (0)<br />

d ¯ d,RS = β2 ρ<br />

144 ˆs<br />

�<br />

C (V,8)<br />

1<br />

uū,� − C(V,8)<br />

uū,⊥ +<br />

�<br />

C (V,8)<br />

d ¯ d,�<br />

�<br />

+ fS(z) ˜ C S tū , (4.50)<br />

+ C(V,8)<br />

d ¯ �<br />

, (4.51)<br />

d,⊥<br />

3 C(V,8)<br />

tū,�<br />

− 2C(V,1)<br />

tū,�<br />

�<br />

+ fA(z) ˜ C S tū , (4.52)<br />

− C(V,8)<br />

d ¯ �<br />

. (4.53)<br />

d,⊥

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!