05.01.2013 Views

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

56 Chapter 2. The Randall Sundrum Model and its Holographic Interpretation<br />

def<strong>in</strong>e <strong>the</strong> propagator of <strong>the</strong> vector and scalar components,<br />

�� − p 2 − M 2 1<br />

KKt∂t<br />

t ∂t + ɛ2<br />

t2 M 2 �<br />

A η µν �<br />

+ 1 − 1<br />

�<br />

p<br />

ξ<br />

µ p ν<br />

�<br />

D ξ νρ(p, t; t ′ ) = Lt′<br />

2πrc<br />

�<br />

p 2 + ξM 2 KK∂t t ∂t<br />

1<br />

t<br />

δ µ ρ δ(t − t ′ ) ,<br />

(2.58)<br />

ɛ2<br />

−<br />

t2 M 2 �<br />

A D ξ<br />

55 (p, t; t′ ) = Lt′<br />

δ(t − t<br />

2πrc<br />

′ ) .<br />

(2.59)<br />

We fur<strong>the</strong>r def<strong>in</strong>e <strong>the</strong> dimensionless quantities qµ ≡ pµ/MKK and cA ≡ ɛMA/MKK<br />

and simplify,<br />

� �<br />

− q 2 1<br />

− t∂t<br />

t ∂t + c2 A<br />

t2 �<br />

η µν + � 1 − 1<br />

ξ<br />

�<br />

� µ ν<br />

q q<br />

D ξ νρ(q, t; t ′ ) =<br />

�<br />

1<br />

ξ q2 1<br />

+ t∂t<br />

t ∂t − c2 A /ξ − 1<br />

t2 �<br />

ξD ξ<br />

55 (q, t; t′ ) =<br />

D ξ νρ(q, t; t ′ ) = Aξ(q, t; t ′ ) qνqρ<br />

q 2 + B(q, t; t′ )<br />

Lt′<br />

2πrcM 2 δ<br />

KK<br />

µ ρ δ(t − t ′ ) ,<br />

Lt′<br />

2πrcM 2 KK<br />

ηνρ − qνqρ<br />

q 2<br />

(2.60)<br />

δ(t − t ′ ) . (2.61)<br />

For <strong>the</strong> vector component, one can read off an ansatz for <strong>the</strong> solution [112],<br />

� �<br />

, (2.62)<br />

which, after <strong>in</strong>sert<strong>in</strong>g <strong>in</strong> (2.60) yields two <strong>in</strong>dependent equations,<br />

�<br />

− 1<br />

ξ q2 1<br />

− t∂t<br />

t ∂t + c2 A<br />

t2 � �<br />

Aξ = − q 2 1<br />

− t∂t<br />

t ∂t + c2 A<br />

t2 �<br />

B , (2.63)<br />

�<br />

�<br />

Lt<br />

B =<br />

′<br />

δ(t − t ′ ) . (2.64)<br />

− q 2 1<br />

− t∂t<br />

t ∂t + c2 A<br />

t2 2πrcM 2 KK<br />

The first one tells us that Aξ(q, t; t ′ ) = B(q/ √ ξ, t; t ′ ) and <strong>the</strong>refore<br />

D ξ<br />

55 (q, t; t′ ) = − 1<br />

ξ Aξ(q, t; t ′ ) = − 1<br />

ξ B(q/�ξ, t; t ′ �<br />

) with cA → c2 A /ξ − 1 . (2.65)<br />

Solv<strong>in</strong>g <strong>the</strong> second equation (2.64), is sufficient to compute both propagators. Evaluated<br />

for t �= t ′ <strong>the</strong> equation can be put <strong>in</strong> <strong>the</strong> form<br />

�<br />

(qt) 2 ∂ 2 qt + (qt)∂qt + � (qt 2 ) − (c 2 A + 1) � � B(qt)<br />

= 0 , (2.66)<br />

qt<br />

which is a Bessel PDE with solutions (compare (2.27))<br />

B>(qt>) = (qt>) � C > 1 J∆−2(qt>) + C > 2 Y∆−2(qt>) � , for t > t ′ , (2.67)<br />

B

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!