05.01.2013 Views

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

44 Chapter 2. The Randall Sundrum Model and its Holographic Interpretation<br />

So that <strong>in</strong> Fourier space <strong>the</strong> two po<strong>in</strong>t function reads<br />

〈O(p)O(q)〉 = −(2π) 4 δ(p + q) R3<br />

ɛ4 �<br />

∆ − 4<br />

×<br />

2 + (qɛ)∆−222−∆Γ(3 − ∆) + . . . + (qɛ) 4−∆2∆−4Γ(∆ − 3) + . . .<br />

(qɛ) ∆−222−∆Γ(2 − ∆) + . . . + (qɛ) 2−∆2∆−2 �<br />

Γ(∆ − 2) + . . .<br />

= −(2π) 4 δ(p + q) R3<br />

ɛ4 �<br />

∆+ − 4 1<br />

�<br />

qɛ<br />

× +<br />

2 ∆+ − 3 2<br />

� 2<br />

+ Γ(3 − ∆+)<br />

Γ(∆+ − 2)<br />

�<br />

qɛ<br />

� �<br />

2∆+−4<br />

+ . . . ,<br />

2<br />

(2.33)<br />

where <strong>in</strong> <strong>the</strong> last step from <strong>the</strong> expansion only <strong>the</strong> lead<strong>in</strong>g non-analytic and lead<strong>in</strong>g<br />

analytic terms have been kept for <strong>the</strong> larger solution of (2.28). Constant terms,<br />

will give rise to contact terms <strong>in</strong> position space and local polynomials <strong>in</strong> q have to<br />

be subtracted by an appropriate boundary counter term. In a properly regularized<br />

action only <strong>the</strong> non-analytic piece rema<strong>in</strong>s. This solution can be analytically cont<strong>in</strong>ued<br />

to <strong>in</strong>teger values of ν, see i.e. [96, p.30-33] as well as for ∆− (<strong>the</strong> latter is not as<br />

straightforward as one might th<strong>in</strong>k and has been first and extensively worked out <strong>in</strong><br />

[94]). The bottom l<strong>in</strong>e of <strong>the</strong> above calculation is now that <strong>the</strong> non-analytic part of<br />

(2.33) <strong>in</strong> position space reads (<strong>in</strong> <strong>the</strong> follow<strong>in</strong>g ignor<strong>in</strong>g <strong>the</strong> subscript of ∆+)<br />

〈O(x)O(y)〉 = R3 Γ(∆)<br />

(2 − ∆)<br />

π2 Γ(∆ − 2) ɛ2∆−8<br />

1<br />

, (2.34)<br />

|x − y| 2∆<br />

which should be <strong>in</strong>terpreted as <strong>the</strong> two po<strong>in</strong>t correlation function of <strong>the</strong> unknown<br />

strongly coupled CFT. And it is <strong>in</strong> fact <strong>the</strong> 2-po<strong>in</strong>t correlation function of a CFT, once<br />

numerical factors and especially <strong>the</strong> cutoff dependence is absorbed <strong>in</strong>to <strong>the</strong> operators,<br />

which corresponds to φ(x, z) � � z=ɛ = ɛ 4−∆ ϕ(x). S<strong>in</strong>ce even if one cannot say much<br />

about strongly <strong>in</strong>teract<strong>in</strong>g <strong>the</strong>ories, conformal <strong>in</strong>variance fixes <strong>the</strong> 1-po<strong>in</strong>t correlation<br />

function to zero and <strong>the</strong> 2- and 3-po<strong>in</strong>t correlation functions up to numerical constants<br />

[89, p.11f.],<br />

〈O(x)〉 = 0 , (2.35)<br />

〈Oi(x1)Oj(x2)〉 = δij<br />

r 2∆i<br />

12<br />

, (2.36)<br />

λijk<br />

〈Oi(x1)Oj(x2)Ok(x3)〉 =<br />

r ∆i+∆j−∆k<br />

12<br />

r ∆i−∆j−∆k<br />

13 r −∆i+∆j+∆k<br />

23<br />

, (2.37)<br />

with rab ≡ |xa − xb| and ∆i denot<strong>in</strong>g <strong>the</strong> conformal dimension (scal<strong>in</strong>g dimension) of<br />

<strong>the</strong> operators Oi(x). The result (2.34) is <strong>the</strong> same as <strong>the</strong> two po<strong>in</strong>t function derived<br />

from <strong>the</strong> Lagrangian<br />

L = ϕ(x)O(x) + LCFT , (2.38)<br />

which is <strong>the</strong>refore called <strong>the</strong> dual Lagrangian to (2.23). Here, ϕ(x) denotes some<br />

source field (sometimes also denoted Jϕ). Therefore, we can relate <strong>the</strong> sources with <strong>the</strong><br />

boundary values of <strong>the</strong> bulk fields at <strong>the</strong> UV brane and <strong>the</strong> scal<strong>in</strong>g dimension with <strong>the</strong><br />

localization <strong>in</strong> <strong>the</strong> bulk. Note that <strong>the</strong> one-po<strong>in</strong>t function (i.e. <strong>the</strong> vacuum expectation

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!