05.01.2013 Views

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

72 Chapter 2. The Randall Sundrum Model and its Holographic Interpretation<br />

<strong>the</strong>n<br />

�<br />

S ∋ dx<br />

= �<br />

�<br />

q=u,d<br />

− e−2σ<br />

rc<br />

� π<br />

−π<br />

� π<br />

dx<br />

dφ � |G| Lmatter<br />

�<br />

rcdφ e −3σ<br />

�<br />

¯Q i/∂ Q + ¯q c i/∂ q c<br />

−π<br />

�<br />

− e −4σ �<br />

sgn(φ) ¯Q M Q Q + ¯q c M q q c<br />

�<br />

�<br />

¯QL ∂φ (e −2σ QR) − ¯ QR ∂φ (e −2σ QL) + ¯q c L ∂φ (e −2σ q c R) − ¯q c R ∂φ (e −2σ q c L)<br />

− δ(|φ| − π) e−4σ<br />

�<br />

rc<br />

ɛab ¯ QLa H †<br />

b<br />

+ ¯ QL HY (5D)<br />

d<br />

Y (5D)<br />

u<br />

u c R + ɛab ¯ QRa H †<br />

b<br />

(5D)<br />

Y u u c L<br />

d c R + ¯ QR HY (5D)<br />

d d c L + h.c.<br />

Here, <strong>the</strong> bar on <strong>the</strong> Yukawas <strong>in</strong>dicates that <strong>in</strong> pr<strong>in</strong>ciple Y (5D)<br />

q<br />

�<br />

�� . (2.122)<br />

and Y (5D)<br />

q<br />

can be<br />

chosen differently, which is suppressed <strong>in</strong> (2.4). This difference is only due to <strong>the</strong> fact,<br />

that <strong>the</strong> Higgs is a brane localized 4D field. We will <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g assume, that<br />

Y (5D)<br />

q<br />

= Y (5D)<br />

q , which can be motivated by consider<strong>in</strong>g <strong>the</strong> model result<strong>in</strong>g as a limit<br />

of a <strong>the</strong>ory with a bulk scalar, <strong>in</strong> which <strong>the</strong> coupl<strong>in</strong>gs would be <strong>the</strong> same, because<br />

<strong>the</strong> bulk must respect 5D Lorentz <strong>in</strong>variance. Even without <strong>in</strong>troduc<strong>in</strong>g this limit,<br />

this assumption should not affect <strong>the</strong> physics, because we expect <strong>the</strong> 5D Yukawas to<br />

be structureless order one coefficients anyway with no effect on <strong>the</strong> hierarchies <strong>in</strong> <strong>the</strong><br />

flavor sector, so that even be<strong>in</strong>g more restrictive, for example choos<strong>in</strong>g Y (5D)<br />

u<br />

= Y (5D)<br />

d<br />

should not change <strong>the</strong> results.<br />

Fur<strong>the</strong>r, <strong>the</strong> real bulk mass matrices M Q,q and <strong>the</strong> complex 5D Yukawa matrices will<br />

not be diagonal <strong>in</strong> <strong>the</strong> same basis. If not stated o<strong>the</strong>rwise, we will from now on assume<br />

that we are <strong>in</strong> <strong>the</strong> bulk mass basis, <strong>in</strong> which <strong>the</strong> bulk mass matrices are diagonal. Due<br />

to <strong>the</strong> flavor degrees of freedom and <strong>the</strong> Higgs on <strong>the</strong> brane, The KK decomposition<br />

is more <strong>in</strong>volved than <strong>in</strong> (2.115). It can be brought <strong>in</strong>to <strong>the</strong> form<br />

uL(xµ, t) = 1 √ r<br />

uR(xµ, t) = 1 √ r<br />

u c L(xµ, t) = 1 √ r<br />

u c R(xµ, t) = 1 √ r<br />

t2 ɛ2 �<br />

u<br />

n<br />

n L(xµ) C Q n (t) a U n ,<br />

t 2<br />

ɛ 2<br />

t 2<br />

ɛ 2<br />

t 2<br />

ɛ 2<br />

�<br />

u n R(xµ) S Q n (t) a U n ,<br />

n<br />

�<br />

u n L(xµ) S u n(t) a u n ,<br />

n<br />

�<br />

u n R(xµ)C u n(t) a u n , (2.123)<br />

n<br />

where <strong>the</strong> <strong>in</strong>dex n runs over all flavor and KK modes. So will for example m1 =<br />

mu, m2 = mc, m3 = mt give <strong>the</strong> SM quark masses, and m4, . . . , m9 <strong>the</strong> masses of<br />

<strong>the</strong> first set of six KK modes, and likewise for downtype quarks. The 3 × 3 matrices<br />

S Q,q<br />

n (t) correspond to <strong>the</strong> solutions with (DD) BCs which do not acquire a zero mode,<br />

while C Q,q<br />

n (t) denote profiles with (NN) BCs that have a zero mode. The additional<br />

a-vectors a (U,u)<br />

n<br />

quantify flavor mix<strong>in</strong>g <strong>in</strong>duced by <strong>the</strong> Yukawa coupl<strong>in</strong>gs. Therefore,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!