05.01.2013 Views

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>in</strong> which<br />

Xq ≡<br />

�<br />

v<br />

√ Y q Y<br />

2MKK<br />

† q ,<br />

¯Xq ≡<br />

2.4. Profiles of Fermions 75<br />

�<br />

v<br />

√ Y<br />

2MKK<br />

† q Y q . (2.133)<br />

The solutions to <strong>the</strong>se PDEs are hyperbolic functions. Integration constants are fixed<br />

by <strong>the</strong> fact that at <strong>the</strong> IR brane t = 1, <strong>the</strong> S-profiles have Dirichlet BCS, SQ,q n (1) = 0<br />

and at 1 − η, <strong>the</strong>y must be matched onto <strong>the</strong> solution of <strong>the</strong> bulk EOM at t = 1− . So<br />

that<br />

S Q � �<br />

Xq<br />

s<strong>in</strong>h (1 − t)<br />

η<br />

n (t) =<br />

s<strong>in</strong>h � � S<br />

Xq<br />

Q n (1 − ) , S q � �<br />

¯Xq<br />

s<strong>in</strong>h (1 − t)<br />

η<br />

n(t) =<br />

s<strong>in</strong>h � � S<br />

¯Xq<br />

q n(1 − ) .<br />

C Q � �<br />

Xq<br />

cosh (1 − t)<br />

η<br />

n (t) =<br />

cosh � � C<br />

Xq<br />

Q n (1 − ) , C q � �<br />

¯Xq<br />

cosh (1 − t)<br />

η<br />

n(t) =<br />

cosh � � C<br />

¯Xq<br />

q n(1 − ) ,<br />

(2.134)<br />

where <strong>the</strong> solutions for <strong>the</strong> C-profiles follow from (2.128). At <strong>the</strong> boundary between<br />

sliver and bulk, <strong>the</strong> bulk solutions are <strong>the</strong>refore related by<br />

S Q n (1 − ) a Q n =<br />

−S q n(1 − ) a q n =<br />

v � �<br />

√ Y ¯Xq<br />

−1 � �<br />

q tanh ¯Xq<br />

q<br />

Cn(1 2MKK<br />

− ) a q n , (2.135)<br />

v<br />

√ Y<br />

2MKK<br />

† � �−1 � � Q<br />

q Xq tanh Xq Cn (1 − ) a Q n , (2.136)<br />

which can be re-expressed by <strong>in</strong>troduc<strong>in</strong>g <strong>the</strong> effective Yukawa coupl<strong>in</strong>gs<br />

�<br />

�Y q ≡ f<br />

v<br />

�<br />

Y �q Y †<br />

�<br />

�q Y q , f(A) = A −1 tanh (A) . (2.137)<br />

√ 2MKK<br />

These correspond to <strong>the</strong> bare Yukawas plus corrections of <strong>the</strong> order O(v2 /M 2 KK ). <strong>On</strong>e<br />

can <strong>the</strong>refore write (2.137) as<br />

S Q n (1 − ) a Q n =<br />

−S q n(1 − ) a q n =<br />

v<br />

√<br />

2MKK<br />

v<br />

√<br />

2MKK<br />

�Y q C q n(1 − ) a q n , (2.138)<br />

�Y †<br />

q C Q n (1 − ) a Q n . (2.139)<br />

It is straightforward to derive <strong>the</strong> eigenvalue equation and expressions for <strong>the</strong> avectors<br />

from (2.138). S<strong>in</strong>ce <strong>the</strong> diagonal S- and C-profiles will have only nonzero<br />

entries (o<strong>the</strong>rwise <strong>the</strong> correspond<strong>in</strong>g SM quark would have no k<strong>in</strong>etic term), <strong>the</strong>y can<br />

be <strong>in</strong>verted and it follows<br />

S Q n (1 − ) a Q n = − v2<br />

2M 2 KK<br />

S q n(1 − ) a q n = − v2<br />

2M 2 KK<br />

�Y u C q n(1 − ) � S q n(1 − ) � −1 �Y †<br />

u C Q n (1 − ) a Q n ,<br />

�Y †<br />

u C Q n (1 − ) � S Q n (1 − ) � −1 �Y u C q n(1 − ) a q n . (2.140)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!