05.01.2013 Views

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

68 Chapter 2. The Randall Sundrum Model and its Holographic Interpretation<br />

(2.90) holds and <strong>the</strong> BCs become<br />

∂t χ a n(ɛ + ) = 0 , (2.102)<br />

∂t χ a n(1 − ) = − L<br />

2πrc<br />

M 2 a<br />

M 2 KK<br />

χ a n(1 − ) = −L v2 4g2 4<br />

4M 2 χ<br />

KK<br />

a n(1 − ) = −L m2a M 2 χ<br />

KK<br />

a n(1 − ) ,<br />

where <strong>the</strong> masses of <strong>the</strong> zero modes ma, with a = W, Z have been <strong>in</strong>troduced. By<br />

comparison with (2.93), <strong>the</strong> propagator can be found from (2.82), and reads<br />

rcD ξ µν(q, t; t ′ �<br />

1 L � 2<br />

) = ηµν + t< − t 2 − t ′2 + 1 ��<br />

+ O(q 2 ) , (2.103)<br />

2πm 2 W.Z<br />

4π M 2 KK<br />

and <strong>the</strong> propagator for <strong>the</strong> photon is given by (2.86).<br />

The 4D effective <strong>the</strong>ory is constructed by <strong>in</strong>sert<strong>in</strong>g <strong>the</strong> KK decomposition (2.99) <strong>in</strong>to<br />

(2.98), apply<strong>in</strong>g <strong>the</strong> EOM and <strong>the</strong> orthonormality relation, so that after <strong>in</strong>tegrat<strong>in</strong>g<br />

out <strong>the</strong> fifth dimension one ends up with<br />

SGauge,2 = �<br />

�<br />

n<br />

d 4 �<br />

x − 1 (n)<br />

F µν F<br />

4 µν(n) − 1<br />

2ξ<br />

− 1<br />

4 Z(n) µν Z µν(n) − 1<br />

2ξ<br />

�<br />

− 1 +(n)<br />

W µν W<br />

2 −µν(n) − 1<br />

∂ µ Z (n)<br />

µ<br />

� 2<br />

ξ ∂µ W +(n)<br />

µ<br />

�<br />

∂ µ A (n)<br />

µ<br />

+ (mZ n ) 2<br />

2<br />

+ 1 (n)<br />

∂µϕ A 2 ∂µ ϕ (n)<br />

A − ξ(mAn ) 2<br />

ϕ<br />

2<br />

(n)<br />

A ϕ(n)<br />

A<br />

∂ ν W −(n)<br />

ν<br />

+ ∂µϕ +(n)<br />

W ∂µ ϕ −(n)<br />

W − ξ(mWn ) 2 ϕ +(n)<br />

W ϕ−(n)<br />

W<br />

� 2<br />

+ (mAn ) 2<br />

2 A(n) µ A µ(n)<br />

Z (n)<br />

µ Z µ(n)<br />

+ (m W n ) 2 W +(n)<br />

µ W −µ(n)<br />

1 (n)<br />

+ ∂µϕ ϕ<br />

2 2<br />

(n)<br />

Z ϕ(n)<br />

Z<br />

� �<br />

+ d 4 �<br />

1<br />

x<br />

2 ∂µh∂ µ h − λv 2 h 2<br />

�<br />

,<br />

Z ∂µ ϕ (n)<br />

Z − ξ(mZn ) 2<br />

(2.104)<br />

under <strong>the</strong> additional condition, that <strong>the</strong> Fourier coefficients <strong>in</strong> (2.99) and (2.100) are<br />

a a n = − 1<br />

ma , b<br />

n<br />

a n = Ma<br />

√r<br />

χ a n(1 − )<br />

m a n<br />

. (2.105)<br />

Solv<strong>in</strong>g <strong>the</strong> EOM with <strong>the</strong> BCs (2.102) leads to<br />

χ a �<br />

L<br />

n(t) = Nn<br />

π t c+ n (t) , (2.106)<br />

where only <strong>the</strong> UV BC is used <strong>in</strong> determ<strong>in</strong><strong>in</strong>g <strong>the</strong> unspecified coefficient <strong>in</strong> <strong>the</strong> homogeneous<br />

solution, so that<br />

c + n (t) = Y0(x a nɛ) J1(x a nt) − J0(x a nɛ) Y1(x a nt) , (2.107)<br />

c − n (t) = 1<br />

xa d � +<br />

t c n (t)<br />

nt dt<br />

� = Y0(x a nɛ) J0(x a nt) − J0(x a nɛ) Y0(x a nt) . (2.108)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!