05.01.2013 Views

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F<br />

gaug<strong>in</strong>g<br />

I<br />

G<br />

SSB<br />

H<br />

1.1. Solutions to <strong>the</strong> Gauge Hierarchy <strong>Problem</strong> 19<br />

Simplest Little Higgs:<br />

G = SU(3) × SU(3) × U(1)<br />

H = SU(2) × SU(2) × U(1)<br />

F = SU(3) × U(1)<br />

I = SU(2) × U(1)<br />

Figure 1.6: Diagram illustrat<strong>in</strong>g <strong>the</strong> relations between <strong>the</strong> different symmetry groups<br />

<strong>in</strong> a Little Higgs <strong>the</strong>ory. Ignor<strong>in</strong>g gauge <strong>in</strong>teractions and spontaneous symmetry<br />

break<strong>in</strong>g (SSB), G is <strong>the</strong> global symmetry of <strong>the</strong> Lagrangian. A subgroup F – larger<br />

than <strong>the</strong> SM gauge group I– is gauged, which breaks <strong>the</strong> global symmetry. Ano<strong>the</strong>r<br />

global subgroup H is left after SSB. A number of GBs make some of <strong>the</strong> F gauge<br />

bosons heavy, while <strong>the</strong> ones from I rema<strong>in</strong> massless. The rema<strong>in</strong><strong>in</strong>g GBs form <strong>the</strong><br />

Higgs.<br />

If ei<strong>the</strong>r <strong>the</strong> SM electroweak gauge bosons or <strong>the</strong> new gauge bosons couple to <strong>the</strong><br />

Higgs, <strong>the</strong>re will still be a leftover global symmetry, which makes <strong>the</strong> Higgs a Goldstone<br />

boson, i.e. massless, but if both gauge degrees of freedom couple to <strong>the</strong> Higgs a mass<br />

term is generated, which will <strong>the</strong>n only be logarithmically divergent.<br />

This is illustrated best on <strong>the</strong> basis of a model <strong>in</strong>troduced by Schmaltz, which he<br />

called <strong>the</strong> Simplest Little Higgs [39]. It will be even more simplified here, because<br />

we will ignore <strong>the</strong> U(1) gauge groups. Consider a Lagrangian with two scalar fields,<br />

<strong>in</strong>variant under <strong>the</strong> global symmetry G = SU(3)1 × SU(3)2 (ignor<strong>in</strong>g additional U(1)<br />

factors),<br />

L = (∂µφ1) † (∂ µ φ1) + (∂µφ2) † (∂ µ φ2) + V (|φ1| 2 , |φ2| 2 ) . (1.35)<br />

Both scalar fields will take on a vev f, so that <strong>the</strong> symmetry breaks down to H =<br />

SU(2)1 × SU(2)2 at that scale. A scheme of <strong>the</strong> symmetry break<strong>in</strong>g is provided <strong>in</strong><br />

Figure 1.6. We adopt <strong>the</strong> parametrization<br />

�<br />

i<br />

φ1 = exp<br />

f<br />

�<br />

i<br />

φ2 = exp<br />

f<br />

�<br />

02×2 κ<br />

κ † �<br />

+<br />

0<br />

�κ<br />

� �<br />

i<br />

√ �3×3 exp<br />

2f f<br />

�<br />

02×2 κ<br />

κ † �<br />

+<br />

0<br />

�κ<br />

� �<br />

√ �3×3 exp −<br />

2f i<br />

f<br />

�<br />

02×2<br />

h<br />

h<br />

† �<br />

+<br />

0<br />

η<br />

�<br />

√ �3×3<br />

2f ⎛ ⎞<br />

0<br />

⎝0⎠<br />

,<br />

f<br />

�<br />

02×2<br />

h<br />

(1.36)<br />

h<br />

† �<br />

−<br />

0<br />

η<br />

�<br />

√ �3×3<br />

2f ⎛ ⎞<br />

0<br />

⎝0⎠<br />

.<br />

f

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!