05.01.2013 Views

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

66 Chapter 2. The Randall Sundrum Model and its Holographic Interpretation<br />

modifications.<br />

The 5D Lagrangian is given by <strong>the</strong> terms <strong>in</strong> (2.12) m<strong>in</strong>us <strong>the</strong> SU(3)C terms and (2.13).<br />

Analogue to <strong>the</strong> SM, we def<strong>in</strong>e<br />

and<br />

W ± 1 � 1<br />

M = √ WM ∓ iW<br />

2<br />

2 �<br />

M ,<br />

ZM =<br />

AM =<br />

MW = vg5<br />

1<br />

�<br />

g2 5 + g ′2<br />

�<br />

g5W<br />

5<br />

3 M − g ′ �<br />

5BM , (2.94)<br />

1<br />

� g 2 5 + g ′2<br />

5<br />

� ′<br />

g 5W 3 �<br />

M + g5BM ,<br />

2 , MZ = v� g 2 5<br />

2<br />

+ g′2<br />

5<br />

, (2.95)<br />

where g5 and g ′ 5 are <strong>the</strong> 5D gauge coupl<strong>in</strong>gs of SU(2)L and U(1)Y , respectively. The<br />

covariant derivative act<strong>in</strong>g on <strong>the</strong> Higgs reads<br />

DµH = 1<br />

�<br />

−i<br />

√<br />

2<br />

√ 2 � ∂µϕ + + MW W + � �<br />

µ<br />

+ terms bi-l<strong>in</strong>ear <strong>in</strong> fields, (2.96)<br />

∂µh + i (∂µϕ3 + MZ Zµ)<br />

and <strong>the</strong> brane Higgs <strong>in</strong>volves <strong>in</strong> accordance with (2.76) <strong>the</strong> follow<strong>in</strong>g gauge fix<strong>in</strong>g<br />

terms,<br />

LGF = − 1<br />

�<br />

∂<br />

2ξ<br />

µ �<br />

1<br />

Aµ − ξ MKKt ∂t<br />

t A5<br />

�� 2<br />

− 1<br />

�<br />

∂<br />

2ξ<br />

µ Zµ − ξ<br />

�<br />

δ(t − 1) kMZ ϕ3 + 2MKK t∂t<br />

2<br />

− 1<br />

�<br />

∂<br />

ξ<br />

µ W + µ − ξ<br />

�<br />

2<br />

�<br />

× ∂ µ W − µ − ξ<br />

2<br />

δ(t − 1) kMW ϕ + + 2MKK t∂t<br />

1<br />

t Z5<br />

��2 1<br />

t W + 5<br />

�<br />

δ(t − 1) kMW ϕ − 1<br />

+ 2MKK t∂t<br />

t W − 5<br />

��<br />

��<br />

, (2.97)<br />

<strong>in</strong> which (2.55) has been applied <strong>in</strong> chang<strong>in</strong>g to t-coord<strong>in</strong>ates for all scalar components.<br />

More generally, <strong>the</strong> gauge fix<strong>in</strong>g parameters could have been chosen different<br />

for each gauge fix<strong>in</strong>g term, but for convenience <strong>the</strong>y are set equal. We will <strong>in</strong> <strong>the</strong><br />

follow<strong>in</strong>g concentrate on terms quadratic <strong>in</strong> <strong>the</strong> fields. It is however straightforward<br />

to implement three and four gauge boson terms. Account<strong>in</strong>g for <strong>the</strong> k<strong>in</strong>etic terms of<br />

<strong>the</strong> gauge bosons and <strong>the</strong> Higgs, as well as for <strong>the</strong> gauge fix<strong>in</strong>g terms, results <strong>in</strong> <strong>the</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!