05.01.2013 Views

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

42 Chapter 2. The Randall Sundrum Model and its Holographic Interpretation<br />

ϕ(xµ),<br />

Zbulk<br />

� � � �<br />

�<br />

φ(x, z) � = ϕ(x) =<br />

z=0<br />

Dφ e iSAdS(φ) ≡ e iS(ϕ) , (2.20)<br />

corresponds to <strong>the</strong> generat<strong>in</strong>g functional of <strong>the</strong> correlation functions of a boundary<br />

CFT, where <strong>the</strong> boundary values of <strong>the</strong> bulk fields act as sources for <strong>the</strong> operators<br />

O(x),<br />

� � � � � �<br />

�<br />

d4x ϕ(x)O(x)<br />

Zbulk φ(x, z) � = ϕ(x) = e<br />

. (2.21)<br />

z=0 CFT<br />

In o<strong>the</strong>r words it is possible to derive all n-po<strong>in</strong>t functions of <strong>the</strong> strongly coupled<br />

boundary CFT by vary<strong>in</strong>g (2.20) with respect to <strong>the</strong> boundary values ϕ of <strong>the</strong> bulk<br />

fields φ, and sett<strong>in</strong>g <strong>the</strong>m to zero<br />

〈O1O2 . . . <strong>On</strong>〉 = 1 δ<br />

n!<br />

n �<br />

ln<br />

�<br />

Zbulk �<br />

� . (2.22)<br />

δϕ1δϕ2 . . . δϕn<br />

We will go through this exercise with <strong>the</strong> example of a free massive bulk scalar φ ≡<br />

φ(x, z), with correspond<strong>in</strong>g 5D action <strong>in</strong> euclidean signature,<br />

SAdS = 1<br />

�<br />

2<br />

d 4 x dz<br />

� ϕ=0<br />

� �5 R �GMN ∂Mφ ∂Nφ + M<br />

z<br />

2 φ 2� . (2.23)<br />

Apply<strong>in</strong>g a Fourier transform along <strong>the</strong> flat space-time directions<br />

�<br />

φ(x, z) = d 4 p e ipx φ(p, � z) , (2.24)<br />

leads to <strong>the</strong> bulk equations of motion (EOM),<br />

�<br />

−p 2 − c2<br />

z2 + z3 1<br />

∂z<br />

z<br />

3 ∂z<br />

�<br />

�φ(p, z) = 0 , (2.25)<br />

where c ≡ MR denotes <strong>the</strong> dimensionless 5D mass parameter. With <strong>the</strong> substitution<br />

�φ(p, z) = (zp) 2 f(zp), <strong>the</strong> equation of motion is recognizable as a Bessel PDE,<br />

2 ∂2<br />

∂<br />

(pz) f(pz) + (pz)<br />

∂(pz) 2 ∂(pz) f(pz) − � (pz) 2 + c 2 + 4 � f(pz) = 0 , (2.26)<br />

with <strong>the</strong> solution<br />

where<br />

�φ(p, z) = p 2 z 2�<br />

�<br />

I∆−2(pz) C1 + K∆−2(pz) C2 , (2.27)<br />

∆(∆ − 4) = c 2 , ∆± = 2 ± � 4 + c 2 . (2.28)<br />

It should be noted, that one of <strong>the</strong> strange properties of Anti de Sitter space is that<br />

bulk masses as low as <strong>the</strong> Breitenlohner Freedman bound c 2 > −4, are compatible<br />

with unitarity [90]. This leaves us with <strong>the</strong> two solutions ∆+ ≥ 2 and ∆− < 2,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!