05.01.2013 Views

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

194 Bibliography<br />

[13] S. Dimopoulos and H. Georgi, “Softly Broken Supersymmetry and SU(5),” Nucl.<br />

Phys. B 193, 150 (1981). Cited on page 5.<br />

[14] N. Seiberg, “Naturalness versus supersymmetric nonrenormalization <strong>the</strong>orems,”<br />

Phys. Lett. B 318, 469 (1993) [arXiv:hep-ph/9309335]. Cited on page 6.<br />

[15] N. Polonsky, “Supersymmetry: Structure and phenomena. Extensions of <strong>the</strong> standard<br />

model,” Lect. Notes Phys. M 68, 1 (2001) [arXiv:hep-ph/0108236]. Cited<br />

on page 6.<br />

[16] P. Fayet, “Supersymmetry and Weak, Electromagnetic and Strong Interactions,”<br />

Phys. Lett. B 64, 159 (1976). Cited on page 7.<br />

[17] R. Barbier, C. Berat, M. Besancon, M. Chemtob, A. Deandrea, E. Dudas, P. Fayet<br />

and S. Lavignac et al., “R-parity violat<strong>in</strong>g supersymmetry,” Phys. Rept. 420, 1<br />

(2005) [arXiv:hep-ph/0406039]. Cited on page 7.<br />

[18] E. Nikolidakis and C. Smith, “M<strong>in</strong>imal <strong>Flavor</strong> Violation, Seesaw, and R-parity,”<br />

Phys. Rev. D 77, 015021 (2008) [arXiv:0710.3129 [hep-ph]]. Cited on page 7.<br />

[19] C. Csaki, Y. Grossman and B. Heidenreich, “MFV SUSY: A Natural Theory for<br />

R-Parity Violation,” Phys. Rev. D 85, 095009 (2012) [arXiv:1111.1239 [hep-ph]].<br />

Cited on page 7.<br />

[20] B. Holdom, “Rais<strong>in</strong>g <strong>the</strong> Sideways Scale,” Phys. Rev. D 24, 1441 (1981). Cited<br />

on page 10.<br />

[21] R. Jackiw and K. Johnson, “Dynamical Model of Spontaneously Broken Gauge<br />

Symmetries,” Phys. Rev. D 8, 2386 (1973). Cited on page 8.<br />

[22] C. Quigg and R. Shrock, “Gedanken Worlds without Higgs: QCD-<br />

Induced Electroweak Symmetry Break<strong>in</strong>g,” Phys. Rev. D 79, 096002 (2009)<br />

[arXiv:0901.3958 [hep-ph]]. Cited on page 8.<br />

[23] S. We<strong>in</strong>berg, “Implications of Dynamical Symmetry Break<strong>in</strong>g: An Addendum,”<br />

Phys. Rev. D 19, 1277 (1979). Cited on page 8.<br />

[24] L. Sussk<strong>in</strong>d, “Dynamics of Spontaneous Symmetry Break<strong>in</strong>g <strong>in</strong> <strong>the</strong> We<strong>in</strong>berg-<br />

Salam Theory,” Phys. Rev. D 20, 2619 (1979). Cited on page 8.<br />

[25] S. Dimopoulos and L. Sussk<strong>in</strong>d, “Mass Without Scalars,” Nucl. Phys. B 155, 237<br />

(1979). Cited on page 9.<br />

[26] E. Eichten and K. D. Lane, “Dynamical Break<strong>in</strong>g of Weak Interaction Symmetries,”<br />

Phys. Lett. B 90, 125 (1980). Cited on page 9.<br />

[27] C. T. Hill and E. H. Simmons, “Strong dynamics and electroweak symmetry<br />

break<strong>in</strong>g,” Phys. Rept. 381, 235 (2003) [ Erratum-ibid. 390, 553 (2004)]<br />

[arXiv:hep-ph/0203079]. Cited on pages 9 and 11.<br />

[28] F. Sann<strong>in</strong>o, “Dynamical Stabilization of <strong>the</strong> Fermi Scale: Phase Diagram of<br />

<strong>Strongly</strong> <strong>Coupled</strong> <strong>Theories</strong> for (M<strong>in</strong>imal) Walk<strong>in</strong>g Technicolor and Unparticles,”<br />

[arXiv:0804.0182 [hep-ph]]. Cited on page 13.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!