05.01.2013 Views

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

On the Flavor Problem in Strongly Coupled Theories - THEP Mainz

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1.1. Solutions to <strong>the</strong> Gauge Hierarchy <strong>Problem</strong> 15<br />

mB, �mB are <strong>the</strong> vector masses of <strong>the</strong> technibaryons. In walk<strong>in</strong>g TC, it is assumed that<br />

<strong>the</strong> technibaryons B and B c have large anomalous dimensions, bound from below only<br />

by <strong>the</strong> unitarity constra<strong>in</strong>t for fermionic operators dim B ≥ 3/2. We can <strong>the</strong>refore<br />

aga<strong>in</strong> symbolically put <strong>in</strong> <strong>the</strong> effect of <strong>the</strong> walk<strong>in</strong>g <strong>in</strong> <strong>the</strong> above Lagrangian at <strong>the</strong> TC<br />

scale, so that<br />

˜d Λ3 TC<br />

Λ2 qRB ETC<br />

c L + d Λ3 TC<br />

Λ2 ETC<br />

qLBR → d˜ Λ 3−˜γ<br />

TC<br />

Λ 2−˜γ<br />

ETC<br />

qRB c L + d Λ3−γ<br />

TC<br />

Λ 2−γ qLBR , (1.23)<br />

ETC<br />

if we denote <strong>the</strong> anomalous dimension for B by γ and for B c by ˜γ. We will fur<strong>the</strong>r<br />

employ <strong>the</strong> redef<strong>in</strong>ition γ → 3 − γ, <strong>in</strong> order to make contact with <strong>the</strong> more recent,<br />

holographically <strong>in</strong>spired literature [61]. The Lagrangian now reads<br />

L ∋ ˜ d ΛETC<br />

� ΛTC<br />

ΛETC<br />

� ˜γ<br />

q RB c L + d ΛETC<br />

� ΛTC<br />

ΛETC<br />

� γ<br />

q LBR ,<br />

−mBBB − �mBB c B c + BL (λHB c R) + h.c. . (1.24)<br />

Note, that <strong>in</strong> this notation <strong>the</strong> unitarity bound requires 3 > γ > 0 and un<strong>in</strong>tuitively<br />

smaller γ means stronger coupl<strong>in</strong>g. Upon diagonalization of <strong>the</strong> mass mix<strong>in</strong>g terms,<br />

with mass eigenstates denoted by ψ and χ respectively,<br />

� qL<br />

BL<br />

� qR<br />

B c R<br />

� � � � �<br />

cos ϕL − s<strong>in</strong> ϕL ψL<br />

=<br />

, tan ϕL =<br />

s<strong>in</strong> ϕL cos ϕL<br />

χL<br />

� � � � �<br />

cos ϕR − s<strong>in</strong> ϕR ψR<br />

=<br />

s<strong>in</strong> ϕR cos ϕR<br />

χ c R<br />

d Λγ<br />

TC<br />

mB Λ γ−1 , (1.25)<br />

ETC<br />

, tan ϕR = ˜ d Λ ˜γ<br />

TC<br />

�mBΛ ˜γ−1 , (1.26)<br />

ETC<br />

<strong>the</strong> Lagrangian reads<br />

L ∋ −mχχχ − ˜mχχ c χ c + � �<br />

ψL s<strong>in</strong> ϕL + χL cos ϕL λH (ψR s<strong>in</strong> ϕR + χ c R cos ϕR) + h.c..<br />

(1.27)<br />

Note that <strong>the</strong> right-handed component of <strong>the</strong> SU(2)L doublet vector quark does not<br />

mix, so that BR = χR and analogously Bc L = χc L . Before EWSB, <strong>the</strong> field ψ rema<strong>in</strong>s<br />

massless and we identify it with <strong>the</strong> SM fermions. The fields χ, χc are <strong>the</strong> New Physics<br />

mass eigenstates with masses<br />

mχ = Λ 1−γ<br />

ETC<br />

�<br />

m2 BΛ2γ−2 ETC + d2Λ 2γ<br />

TC , m˜χ = Λ 1−˜γ<br />

ETC<br />

�<br />

˜m 2 BΛ2˜γ−2 ETC + ˜ d2Λ 2˜γ<br />

TC . (1.28)<br />

The fact that <strong>the</strong> SM fermions are admixtures of elementary and composite fermions<br />

with a composite component proportional to s<strong>in</strong> ϕL or s<strong>in</strong> ϕR motivates <strong>the</strong> name<br />

partial compositeness. After EWSB, <strong>the</strong> SM fermions ga<strong>in</strong> masses through effective<br />

Yukawa coupl<strong>in</strong>gs to <strong>the</strong> TC condensate H, whose size is also controlled by <strong>the</strong> mix<strong>in</strong>g<br />

angles, and thus by <strong>the</strong> anomalous dimension of <strong>the</strong> composite technibaryons,<br />

Yψ = s<strong>in</strong> ϕLλ s<strong>in</strong> ϕR . (1.29)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!