28.01.2013 Views

LCLS Conceptual Design Report - Stanford Synchrotron Radiation ...

LCLS Conceptual Design Report - Stanford Synchrotron Radiation ...

LCLS Conceptual Design Report - Stanford Synchrotron Radiation ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

L C L S C O N C E P T U A L D E S I G N R E P O R T<br />

22 D.T. Palmer et al., in Proc. of the 1995 Particle Accelerator Conf. (1995), p. 982. In this reference it is<br />

pointed out that the dipole emittance term has been suppressed by an order of magnitude to the level of<br />

0.1 µm, implying that in the unsymmetrized case the dipole emittance term would be 1 µm. See also<br />

B. Dwersteg et al., “rf gun design for the TESLA VUV free electron laser,” Nucl. Instrum. and Meth.<br />

A 393 (1997) 93.<br />

23 E.L. Ginzton, Microwave Measurements, McGraw-Hill (1957), p. 295.<br />

24 X.-J. Wang et al., “<strong>Design</strong> studies for the <strong>LCLS</strong> 120 Hz rf gun,” Informal <strong>Report</strong> BNL-67922 (Dec.<br />

2000).<br />

25 M. Uesaka (U. Tokyo) and M. Kando (JAERI Advanced Photon Research Center), private<br />

communication (11/00).<br />

26 J. Schmerge, “120 Hz RF gun operation,” draft of internal SLAC technical report (6/00).<br />

27 H. Braun et al., “Results from the CLIC Test Facility,” in Proc. of the 5 th European Particle<br />

Accelerator Conf., (1996), p. 44.<br />

28 T. Srinivasan-Rao et al., J. Appl. Phys. 69 (1991) 3291.<br />

29 P. Davis et al., in Proc. of the 1993 Particle Accelerator Conf., p. 2976.<br />

30 E. Chevallay et al., Nucl. Instrum. and Meth. A 340 (1994) 146.<br />

31 G. Mulhollan, "Common Sense Copper and RF Guns," <strong>LCLS</strong>-TN-99-9 (July 1999).<br />

32 D. Reis, Ph.D. Thesis, Univ. Rochester, Dept. of Physics and Astronomy, June 1999, UR-1573, pp.<br />

130-131.<br />

33 D. Reis et al., Nucl. Instrum. and Meth. A 429 (1999) 341.<br />

34 D.T. Palmer, SLAC, private communication (1997).<br />

35 X.-J. Wang et al., "FEL technologies R&D and SASE gain enhancement observation at the BNL<br />

ATF," in Proc. of the 2000 European Particle Accelerator Conf., p. 779.<br />

36 The gain per pass in Ti:sapphire amplifiers is sufficient to get from 1 nJ to a few mJ in eight (8) passes.<br />

For example, see S. Backus et al., Opt. Lett. 20 (1995) 2000.<br />

35-1 J.A. Hoffnagle and C.M. Jefferson, Appl. Opt. 39 (2000) 5488.<br />

37 P. Maine et al., IEEE J. Quantum Electron. QE-24 (1988) 398.<br />

38 A.M. Weiner et al., J. Opt. Soc. B 5 (1988) 1563.<br />

39 A.M. Weiner et al., Opt. Lett. 15 (1990) 326; A.M. Weiner, Rev. Sci. Instrum. 71 (2000) 1929.<br />

40 ShapeShifter spatial light modulator, Meadowlark Optics, Frederick, CO.<br />

41 B.M. Van Wonterghem et al., Proc. of the Conference on Laser Coherence Control, in SPIE 1870<br />

(1993), p. 64.<br />

42 J.A. Hoffnagle and C.M. Jefferson, Appl. Opt. 39 (2000) 5488.<br />

43 R.S. Craxton, Opt. Commun. 34 (1980) 474.<br />

44 For ultrafast laser pulses, the effects of group velocity walkoff and nonlinear phase effects must be<br />

considered when designing the conversion stage.<br />

45 D.A. Reis, Ph.D. Thesis, Univ. Rochester, Dept. of Physics and Astronomy, June 1999, UR-1573, pp.<br />

23 and 131.<br />

46 P. Davis et al., Proc. 1993 Particle Accelerator Conf., p. 2976.<br />

47 H.-S. Albrecht et al., Appl. Opt. 32 (1993) 6659.<br />

48 D.J. Kane and R. Trebino, Opt. Lett. 18 (1993) 823.<br />

6-66 ♦ I NJECTOR

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!