28.01.2013 Views

LCLS Conceptual Design Report - Stanford Synchrotron Radiation ...

LCLS Conceptual Design Report - Stanford Synchrotron Radiation ...

LCLS Conceptual Design Report - Stanford Synchrotron Radiation ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

is proportional to<br />

L C L S C O N C E P T U A L D E S I G N R E P O R T<br />

z<br />

dx<br />

∆ E = e∫ Ex⎡⎣x, y, z′ , t( z′ ) ⎤⎦<br />

( z′ ) dz′<br />

(8.13)<br />

dz<br />

0<br />

z − iκ ⎢z′ + ∫ I<br />

1 ( z′′ ) dz′′ x<br />

+ ∫ I<br />

1 ( z′′ ) dz′′<br />

y<br />

⎥<br />

⎢ 0 0 ⎥<br />

pz′<br />

F = I1x( z ) e ⎣ ⎦<br />

∫ ′ u⎡⎣x( z′ ) , y( z′ ) , z′ ⎤⎦e<br />

dz′<br />

(8.14)<br />

0<br />

⎡ z′ z′<br />

2 2<br />

⎤<br />

where κ = k/(2γ 2 ). For the <strong>LCLS</strong> the breaks between undulator segments are relatively short and<br />

produce a phase shift of an integer multiple of the x-ray wavelength. Therefore it is close to the<br />

homogeneous undulator case, described analytically in Ref. [8]. Then the fundamental eigenmode<br />

is close to the Gaussian beam with almost flat wavefronts<br />

x<br />

2<br />

+ y<br />

2<br />

−<br />

2σ<br />

2<br />

∝ r<br />

(8.15)<br />

u e<br />

The relative reduction of the maximum energy gain caused by different field imperfections is<br />

calculated using Eq. (8.14) and F is expanded near the “ideal” state, by different kinds of<br />

“imperfections”.<br />

8.2.5.2 Trajectory Straightness<br />

y:<br />

Using Eq. (8.15) at z = NL at the end of the N th undulator segment, one can expand F in x and<br />

⎧ ⎡ z z<br />

2 2<br />

⎤ ⎫<br />

⎪NL − iκ ⎢z+ ∫ I<br />

1 ( z′ ) dz′ x<br />

+ ∫ I<br />

1y(<br />

z′ ) dz′<br />

⎥ ⎪<br />

⎪<br />

F | I1( z) e 0 0 e<br />

pz ⎪<br />

≈ ⎨<br />

⎢ ⎥<br />

∫ x ⎣ ⎦ dz⎬<br />

−<br />

⎪ 0<br />

⎪<br />

⎪ ⎪<br />

⎩ ⎭0<br />

⎡ z z<br />

2 2<br />

⎤<br />

( ) ( )<br />

1 NL − iκ⎢z+ ∫ I<br />

1<br />

z′ dz′ x<br />

+ ∫ I<br />

1<br />

z′ dz′<br />

y<br />

⎥<br />

I<br />

2 2<br />

1 ( z) e 0 0 e<br />

pz<br />

x<br />

2<br />

∫<br />

⎢<br />

x ⎣ ⎥⎦<br />

⎡ ( z) + y ( z) ⎤dz<br />

2σ ⎢ ⎥<br />

r 0<br />

⎣ ⎦<br />

(8.16)<br />

For the “ideal” case (the curly brackets in Eq. (8.16)), the slow part of the expression under the<br />

integral is almost constant. Therefore, Eq. (8.16) leads to<br />

F − F 0<br />

F 0<br />

≈− x 2 + y 2<br />

2 , (8.17)<br />

2σ r<br />

U N D U L A T O R ♦ 8-11

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!