20.01.2014 Views

Workshop proceeding - final.pdf - Faculty of Information and ...

Workshop proceeding - final.pdf - Faculty of Information and ...

Workshop proceeding - final.pdf - Faculty of Information and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

k<br />

k k k<br />

( ) p(<br />

p Ζ | X , B = ∏ zk | x<br />

k,<br />

b<br />

k)<br />

(27)<br />

k = 1<br />

k<br />

k<br />

given the target trajectory X = ( x1, x2,..., xk<br />

) <strong>and</strong> nuisance parameter B = ( b1<br />

,..., b k<br />

).<br />

5. TBD Procedures<br />

In our situation, given the set <strong>of</strong> unthresholded ambiguous range-Doppler data maps up to<br />

k<br />

the k th visit, Z = ( z ,..., 1<br />

z<br />

k ) , the TBD procedures aim to compute optimal (in MAP sense) target<br />

k<br />

trajectory X = ( x1, x2,..., xk<br />

) in ambiguous range-Doppler map, <strong>and</strong> its ambiguity number<br />

k<br />

k k<br />

sequence Μ = ( m1<br />

,..., m k<br />

) . The close-form solution <strong>of</strong> X , Μ is hardly feasible. Moreover, the<br />

k<br />

existence <strong>of</strong> nuisance parameters, B in the measurements also increases the complexity <strong>of</strong> solving<br />

this problem. An exhaustive search over the ambiguous range-Doppler maps, mode parameter <strong>and</strong><br />

unknown nuisance parameter space results in unbearable computational burden. Luckily, advantage<br />

k<br />

k<br />

can be taken from the Markovian property <strong>of</strong> the target trajectory X <strong>and</strong> mode sequence Μ , the<br />

k<br />

k<br />

search for the MAP estimates <strong>of</strong> X <strong>and</strong> Μ can be solved using DP methodology. In the following<br />

k<br />

k<br />

section, we first derive the joint MAP estimates <strong>of</strong> X <strong>and</strong> Μ assuming the known nuisance<br />

parameters <strong>and</strong> then extend the approach to the case <strong>of</strong> unknown nuisance parameters.<br />

5.1 Known Nuisance Parameters<br />

k<br />

k<br />

When the nuisance parameter is known, the joint MAP estimates <strong>of</strong> X <strong>and</strong> Μ is given by<br />

ˆ k<br />

( , ˆ k k k k<br />

X Μ ) = arg max p( X , Μ | Z ) (28)<br />

k X , Μ<br />

k<br />

k k k<br />

Direct maximization <strong>of</strong> p( X , Μ | Z ) is extremely difficult since a close-form solution may not exist.<br />

Brute-force maximization results in an exhaustive search over the ambiguous range-Doppler maps <strong>and</strong><br />

mode parameters, which represents a huge computation burden. Making use <strong>of</strong> the Markovian<br />

k<br />

k<br />

property <strong>of</strong> X <strong>and</strong> Μ , as shown in Section 3, the search for target trajectory <strong>and</strong> mode sequence that<br />

k k k<br />

maximize the posteriori function p( X , Μ | Z ) can be solved using DP methodology.<br />

The maximization in (28) is split into two parts<br />

ˆ k ˆ k k k k<br />

( X , Μ ) = argmax<br />

⎡<br />

max p( , | )<br />

⎤<br />

, k 1 k 1<br />

k m ⎢<br />

X M Z<br />

x − −<br />

k⎣X , M<br />

⎥<br />

(29)<br />

⎦<br />

The inner maximization is denoted by<br />

( , ) max ( k , k | k<br />

I x m = p X M Z ) (30)<br />

k k k<br />

,<br />

k−1 k−1<br />

X M<br />

Ik( xk, mk)<br />

can be interpreted as the merit <strong>of</strong> the c<strong>and</strong>idate trajectory ending in any state xk<br />

<strong>and</strong> mode mk<br />

at the kth visit. The desired iterative relation is obtained using Bayes’ theorem to<br />

express Ik+ 1( x<br />

k+ 1,<br />

mk+<br />

1) in terms <strong>of</strong> Ik( x<br />

k, mk)<br />

. From Bayes’ theorem it follows that<br />

k+ 1 k+ 1 k+<br />

1<br />

p( X , Μ | Z )<br />

p( zk+ 1| xk+ 1) p( xk+ 1| xk, mk) p( mk+<br />

1| mk, xk)<br />

(31)<br />

k k k<br />

= p( X , Μ | Z )<br />

k<br />

p( zk+<br />

1<br />

| Z )<br />

Using (31), Ik+ 1( x<br />

k+ 1,<br />

mk+<br />

1)<br />

can be written in the form<br />

Ik+ 1( xk+ 1, mk+<br />

1)<br />

k+ 1 k+ 1 k+<br />

1<br />

= max p( X , Μ | Z )<br />

(32)<br />

X<br />

k<br />

, Mk<br />

⎧p( zk+ 1| xk+ 1) p( xk+ 1| xk, mk) p( mk+<br />

1| mk, xk)<br />

⎫<br />

= max ⎨ Ik( xk, mk)<br />

k,<br />

m<br />

k<br />

⎬<br />

x k⎩<br />

p( zk+<br />

1<br />

| Z )<br />

⎭<br />

k<br />

Equation (32) constitutes the desired iterative relation. The function p ( zk<br />

+ 1<br />

| Z ) is used for<br />

normalization purposes only <strong>and</strong> can be dropped without affecting the maximizer. The probability<br />

density p ( z )<br />

k+ 1<br />

| x<br />

k+<br />

1<br />

is obtained from(26). Working with the natural logarithm <strong>of</strong> (32), we transform<br />

the merit function into an additive rather than a multiplicative function.<br />

16

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!