20.01.2014 Views

Workshop proceeding - final.pdf - Faculty of Information and ...

Workshop proceeding - final.pdf - Faculty of Information and ...

Workshop proceeding - final.pdf - Faculty of Information and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

where we are using the same symbol Γ for the redefined merit function <strong>of</strong> (42). Note that similar to<br />

(34), the merit function in (42) also consists <strong>of</strong> two parts, the measurement information part<br />

(represented by the first term on the right side) <strong>and</strong> the transition information part (represented by the<br />

last three terms on the right side). Equation (42) differs (34) only in the measurement information part,<br />

where the former has to perform maximization over the space <strong>of</strong> nuisance parameters b<br />

k + 1<br />

. We now<br />

consider the ML estimate <strong>of</strong> the nuisance parameters. The logarithm <strong>of</strong> the likelihood function in (42)<br />

can be written as<br />

2 sk+ 1+<br />

uk+<br />

1<br />

0 0<br />

( ) { ( )}<br />

( i<br />

ln , l ) 2<br />

p zk+ 1| xk+ 1, bk+ 1<br />

=−Nlnσ<br />

− + ln I<br />

2<br />

0<br />

2 uk+ 1zk+<br />

1<br />

/ σ<br />

(43)<br />

σ<br />

(,) il<br />

where s = ∑ S +<br />

; ( i0, l0)<br />

denotes the corresponding cell when a target locates at x k +1<br />

.<br />

k+ 1<br />

z<br />

(,) il∈<br />

k 1<br />

We evaluate the partial derivatives <strong>of</strong> the logarithm likelihood function as<br />

( i0, l0) 2<br />

( )<br />

I ( )<br />

( 0, 0)<br />

1<br />

2<br />

1 1<br />

/<br />

i l<br />

z<br />

uk+ zk+<br />

σ<br />

k+ 1<br />

xk+ 1 k+ 1 1<br />

k+<br />

1<br />

=− +<br />

2<br />

2<br />

∂u ( i0, l0) 2<br />

k+ 1<br />

σ I ( )<br />

1<br />

0<br />

2 u<br />

1 1<br />

/<br />

k<br />

k<br />

zk<br />

σ σ u<br />

+<br />

+ +<br />

( i0, l0) 2<br />

I (<br />

( )<br />

0, 0)<br />

1<br />

2 u<br />

1 1<br />

/ i l<br />

k+ zk+<br />

σ<br />

k+ 1<br />

xk+ 1 k+ 1<br />

2 z<br />

1 1<br />

k<br />

u<br />

k+ k+<br />

k<br />

= − −<br />

2<br />

2<br />

2 2<br />

( i0, l0) 2 2<br />

2<br />

∂σ<br />

( σ ) σ I0( 2 uk+ 1zk+<br />

1<br />

/ σ ) ( σ )<br />

∂ln p | , b 1<br />

z<br />

( z<br />

)<br />

∂ ln p | , b s + u N<br />

+ 1 + 1<br />

where I() = I() ′ is the first-order modified Bessel Function. Equating (44) to zero, we obtain<br />

1 0<br />

( i0, l0) ( uˆk+ zk+<br />

2<br />

σˆ<br />

)<br />

( i0, l0) ( uˆk+ zk+<br />

2<br />

σˆ<br />

)<br />

I1 2<br />

1 1<br />

/<br />

uˆ<br />

k + 1<br />

( i0, l0)<br />

I 1<br />

0<br />

2<br />

1 1<br />

/ zk<br />

+<br />

= (46)<br />

Substituting the result to (45), <strong>and</strong> equating it to zero, we have<br />

2<br />

uˆk<br />

+ 1= s k + 1− Nˆσ<br />

(47)<br />

By solving (46) <strong>and</strong> (47) jointly, we can find the MAP estimate <strong>of</strong> the unknown<br />

2<br />

parameter bˆ 2<br />

ˆ ˆ<br />

k+ 1<br />

( σ , uk+<br />

1)<br />

. Notice that both ˆ σ <strong>and</strong> u ˆk + 1<br />

enter the function <strong>of</strong> (46) in a nontrivial way,<br />

therefore, solving the function will be an iterative numerical process, which is computationally<br />

expensive.<br />

Now we consider a simple way <strong>of</strong> estimating (<br />

2<br />

, ). The target signature only affects the cell it<br />

σ u k + 1<br />

locates, as a result, if a target is present <strong>and</strong> locates in cell ( i0, l0)<br />

at k + 1st frame, the pixel ( i0 , l0<br />

z )<br />

k + 1<br />

is a<br />

(,) il<br />

noncentral chi-square variable, while the other pixels z<br />

k + 1<br />

, (, il)<br />

∈ S , (, il) ≠ ( i0, l0)<br />

, are exponentially<br />

distributed variables. Both the noncentral chi-square <strong>and</strong> exponential variables share the same<br />

2<br />

parameterσ , therefore, we can estimateσ 2 (mean <strong>of</strong> the exponential distribution) by averaging the<br />

exponentially distributed pixels<br />

( i0, l0)<br />

2 1<br />

( , ) 1 1<br />

ˆ σ il sk − zk<br />

= ∑ z<br />

+ +<br />

(,) il ,(,) il ( i 1<br />

0, l0)<br />

k +<br />

=<br />

∈ ≠<br />

N −1 S<br />

(48)<br />

N −1<br />

Substituting (48) into (47) gives<br />

( i0, l0)<br />

Nzk+<br />

1<br />

− sk+1<br />

uˆ<br />

k + 1<br />

=<br />

(49)<br />

N −1<br />

Substituting (48) <strong>and</strong> (49) into (42) <strong>and</strong> dropping the terms independent <strong>of</strong> ( xk+ 1,<br />

mk+<br />

1)<br />

, we end up with<br />

a modified merit function<br />

Γ ( x , m )<br />

k+ 1 k+ 1 k+<br />

1<br />

( i0, l0)<br />

( i0, l0) ( i0, l0)<br />

(2N−1)<br />

z 2 ( N 1)( N z<br />

1<br />

k 1<br />

sk)<br />

z<br />

k+<br />

−s<br />

⎧<br />

⎫<br />

k ⎪<br />

⎛ −<br />

+<br />

− ⎞<br />

k+<br />

1 ⎪<br />

=− +ln I<br />

( i 0<br />

0, l0) ⎨ ⎜<br />

⎟<br />

( i0, l0)<br />

⎬<br />

sk −z ⎜<br />

k+ 1<br />

sk −z<br />

⎟<br />

k+<br />

1<br />

⎩⎪<br />

⎝<br />

⎠⎭⎪<br />

+ max ln ( | , ) + ln ( | , ) +Γ ( , )<br />

xk,<br />

mk<br />

{ p x x m p m m x x m }<br />

k+ 1 k k k+<br />

1 k k k k k<br />

where we are using the same symbol Γ for the redefined merit function <strong>of</strong> (50).<br />

Once the merit function <strong>of</strong> last frame has been calculated, the last state <strong>and</strong> mode estimates are<br />

obtained using<br />

(44)<br />

(45)<br />

(50)<br />

19

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!