05.03.2014 Views

addressing uncertainty in oil and natural gas industry greenhouse

addressing uncertainty in oil and natural gas industry greenhouse

addressing uncertainty in oil and natural gas industry greenhouse

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Uncerta<strong>in</strong>ty for Regenerator CO 2 Emissions – Coke Burn Rate Approach<br />

(Compendium Equation 5-4)<br />

Apply<strong>in</strong>g API Compendium Equation 5-4, the estimated CO 2 emissions from the regenerator would be:<br />

tonnes Coke Burned 0.93 tonnes C 44 tonnes CO2<br />

E<br />

CO<br />

= 119,750 × × 408,348 tonnes CO<br />

2<br />

2<br />

/year<br />

year tonnes Coke 12 tonnes C =<br />

The <strong>uncerta<strong>in</strong>ty</strong> is calculated by apply<strong>in</strong>g Equation 4-6 <strong>and</strong> us<strong>in</strong>g the relative <strong>uncerta<strong>in</strong>ty</strong> values.<br />

U( rel) = U( rel) + U( rel)<br />

U rel<br />

CO2<br />

2 2<br />

Coke burned<br />

C content<br />

2 2<br />

( )<br />

CO<br />

= 15 + 5.5 = 15.98%<br />

2<br />

Uncerta<strong>in</strong>ty for Regenerator CO 2 Emissions – “K 1 , K 2 , K 3 ” Approach<br />

(API Compendium Equation 5-5)<br />

Apply<strong>in</strong>g the air rate to API Compendium Equation 5-5, the CO 2 emission estimate is:<br />

⎡0.2982 kg - m<strong>in</strong> 2,150 dscm ⎤ 44 tonne 8760 hr<br />

E<br />

CO<br />

= × × ( 11% + 9% ) × × × 411,862 tonnes CO<br />

2 ⎢<br />

=<br />

2<br />

/yr<br />

⎣ hr - dscm % m<strong>in</strong> ⎥<br />

⎦ 12 1,000 kg yr<br />

Note, the K 1 term (0.2982 kg-m<strong>in</strong>/hr-dscm%) is a constant.<br />

For this calculation, the <strong>uncerta<strong>in</strong>ty</strong> associated with the sum of the CO 2 <strong>and</strong> CO is determ<strong>in</strong>ed first. This<br />

<strong>uncerta<strong>in</strong>ty</strong> is calculated by apply<strong>in</strong>g Equation 4-4, us<strong>in</strong>g the absolute uncerta<strong>in</strong>ties.<br />

U ( abs)<br />

U ( abs)<br />

U ( abs)<br />

concentrations<br />

CO2<br />

CO<br />

=<br />

=<br />

0.5<br />

0.5<br />

=<br />

2<br />

2<br />

U ( abs)<br />

+ (0.05×<br />

11)<br />

+ (0.05×<br />

9)<br />

2<br />

Reproducibility<br />

2<br />

2<br />

= 0.743<br />

= 0.673<br />

+ U ( abs)<br />

2<br />

Variability<br />

U ( rel)<br />

U ( rel)<br />

CO<br />

CO2<br />

0.743<br />

= 100% × = 6.76%<br />

2<br />

11<br />

0.673<br />

= 100% × = 7.47%<br />

9<br />

Equation 4-4, us<strong>in</strong>g the absolute uncerta<strong>in</strong>ties, is also applied to comb<strong>in</strong>e these compositions.<br />

U ( abs)<br />

=<br />

U ( abs)<br />

2<br />

concentrations<br />

CO2<br />

+ U ( abs)<br />

2<br />

CO<br />

U ( abs)<br />

U ( rel)<br />

concentrations<br />

concentrations<br />

=<br />

0.743<br />

2<br />

+ 0.673<br />

= 1.002<br />

1.002<br />

= 100% × = 5.01%<br />

11+<br />

9<br />

2<br />

The CO 2 <strong>uncerta<strong>in</strong>ty</strong> is then calculated by apply<strong>in</strong>g Equation 4-6 <strong>and</strong> us<strong>in</strong>g the relative <strong>uncerta<strong>in</strong>ty</strong> values.<br />

Pilot Version, September 2009 5-11

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!