05.03.2014 Views

addressing uncertainty in oil and natural gas industry greenhouse

addressing uncertainty in oil and natural gas industry greenhouse

addressing uncertainty in oil and natural gas industry greenhouse

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Wt% C<br />

∑<br />

lbmole x lbmole C 12 lb C 1<br />

i<br />

Total<br />

= × × ×<br />

100 lbmole<br />

total<br />

lbmolei lbmole C MWTotal<br />

This equates to 71.7% C, as shown <strong>in</strong> Table 5-6.<br />

For each compound <strong>in</strong> the <strong>gas</strong> mixture, the <strong>uncerta<strong>in</strong>ty</strong> from this calculation is determ<strong>in</strong>ed by apply<strong>in</strong>g<br />

Equation 4-6, us<strong>in</strong>g the relative uncerta<strong>in</strong>ties of the lbmole i <strong>and</strong> MW Total . This is demonstrated for ethane.<br />

UR ( e lWt ) % C= Urel ( ) × Urel ( ) = 5.22 + 3.73 = 6.41%<br />

2 2 2 2<br />

i mole%<br />

i MW Total<br />

The <strong>uncerta<strong>in</strong>ty</strong> associated with the wt% C of the mixture is calculated by apply<strong>in</strong>g Equation 4-4, us<strong>in</strong>g the<br />

absolute uncerta<strong>in</strong>ties for the weight percent carbon of each molar compound.<br />

∑<br />

2<br />

U ( abs) = U ( abs)<br />

( %)<br />

Wt%<br />

∑ wt<br />

U ( abs) = (0.0624× 53.96) + (0.0641× 10.16) + (0.0707× 7.62) + (0.0672×<br />

0)<br />

∑( wt%)<br />

U ( abs) = 3.4704<br />

∑( wt%)<br />

3.4704<br />

Urel ( ) = × 100% = 4.84%<br />

∑( Wt %)<br />

71.7339<br />

2 2 2 2<br />

The uncerta<strong>in</strong>ties associated with the composition are used <strong>in</strong> the follow<strong>in</strong>g comparison of the emission<br />

estimation methodologies for H 2 plants.<br />

Uncerta<strong>in</strong>ty for H 2 Plant Emissions – Feedstock Rate Approach<br />

(API Compendium Equation 5-8)<br />

The CO 2 emissions can be calculated us<strong>in</strong>g the feedstock rate <strong>and</strong> carbon content, apply<strong>in</strong>g Equation 5-8 from<br />

the API Compendium:<br />

E<br />

E<br />

CO2<br />

CO2<br />

9<br />

3×<br />

10 scf<br />

=<br />

yr<br />

lbmole<br />

×<br />

379.3<br />

= 178,336 tonnes CO<br />

2<br />

feed<br />

scf<br />

/ yr<br />

18.9 lb<br />

×<br />

lbmole<br />

feed 0.7173 lb C 44 lb CO<br />

×<br />

×<br />

feed lb feed 12 lb C<br />

2<br />

tonne<br />

×<br />

2204.62 lb<br />

The CO 2 <strong>uncerta<strong>in</strong>ty</strong> is then calculated by apply<strong>in</strong>g Equation 4-6 <strong>and</strong> us<strong>in</strong>g the relative <strong>uncerta<strong>in</strong>ty</strong> values.<br />

Urel ( ) = Urel ( ) + Urel ( ) + Urel ( )<br />

Urel<br />

CO<br />

2<br />

2<br />

2 2 2<br />

Feedstock rate MW feedstock C content feedstock<br />

2 2 2<br />

( )<br />

CO<br />

= 15 + 3.73 + 4.84 = 16.2%<br />

Uncerta<strong>in</strong>ty for H 2 Plant Emissions – H 2 Production Approach<br />

(API Compendium Equation 5-9)<br />

A second approach for estimat<strong>in</strong>g emissions associated with a hydrogen plant is based on the H 2 production<br />

rate rather than the feedstock rate. This approach applies the stoichiometric ratio of H 2 formed to CO 2<br />

Pilot Version, September 2009 5-16

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!