24.11.2012 Views

The mechanical effects of short-circuit currents in - Montefiore

The mechanical effects of short-circuit currents in - Montefiore

The mechanical effects of short-circuit currents in - Montefiore

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

8.4. INFLUENCE OF THE RECLOSURE<br />

<strong>The</strong> follow<strong>in</strong>g annex gives a simplified method<br />

without dropp<strong>in</strong>g after the first fault. <strong>The</strong> motion <strong>of</strong><br />

the equivalent pendulum is on a circle.<br />

After the first <strong>short</strong>-<strong>circuit</strong><br />

π<br />

Let us exam<strong>in</strong>e the most simple case when: δ m ≤<br />

2<br />

without dropp<strong>in</strong>g.<br />

This connection can be done follow<strong>in</strong>g two methods:<br />

- chapter 4.2 (volume 1 <strong>of</strong> [Ref 1]) gives the<br />

maximum angle after the first <strong>short</strong>-<strong>circuit</strong>:<br />

δ m = arccos χ .<br />

- the IEC 60865 gives the follow<strong>in</strong>g formula (*31).<br />

This sw<strong>in</strong>g -out angle has been chosen to take <strong>in</strong>to<br />

account the "worst case" which is a <strong>short</strong>-<strong>circuit</strong><br />

duration less than or equal to the stated <strong>short</strong>-<strong>circuit</strong><br />

duration Tkl.<br />

At the end <strong>of</strong> dead time Tu, the angle <strong>of</strong> the<br />

pendulum is called δ i . Its values :<br />

⎛ Tu ⎞<br />

δ i = δ m cos⎜2π<br />

+ α 0 ⎟<br />

⎝ T ⎠<br />

0<br />

⎛ Tu ⎞ T . δ ′ k ⎛ Tu ⎞<br />

δ i = δ k cos⎜2π<br />

⎟ + s<strong>in</strong><br />

0<br />

⎜2π<br />

0 ⎟<br />

⎝ T ⎠ 2π<br />

⎝ T ⎠<br />

0.<br />

8bc<br />

2π<br />

o g<br />

where T =<br />

is the period <strong>of</strong> the free<br />

2<br />

2<br />

π ⎛ δ ⎞ m 1−<br />

64 ⎜<br />

90 ⎟<br />

⎝ ⎠<br />

motion (without current) and δ m is the maximum<br />

sw<strong>in</strong>g-out angle (4.9 volume 1 <strong>of</strong> [Ref 1]).<br />

<strong>The</strong> speed before the reclosure is given by :<br />

2π<br />

′ =−<br />

⎛ Tu<br />

⎜<br />

⎞<br />

⎟ + ′<br />

⎛ Tu<br />

δ<br />

⎜<br />

⎞<br />

i δ k.s<strong>in</strong> 2π δ k.cos2π<br />

⎟<br />

o<br />

T ⎝ o<br />

T ⎠ ⎝ o<br />

T ⎠<br />

Let us consider the time<br />

0<br />

T α<br />

t 0 =−<br />

2π<br />

for<br />

which the δ angle is equal to δ m . If Tu is higher<br />

than to t0 , the angle δ is effectively equal to<br />

δ m . If not done δ angle and subsequently δ i<br />

always lower than δ m .<br />

is<br />

128<br />

L<strong>in</strong>kage to the second <strong>short</strong>-<strong>circuit</strong><br />

Dur<strong>in</strong>g the second <strong>short</strong>-<strong>circuit</strong>, the movement is<br />

ruled by equation :<br />

2<br />

T<br />

δ<br />

″<br />

= r<br />

2<br />

2<br />

4π<br />

cos ( δ) − s<strong>in</strong> ( δ)<br />

=<br />

−<br />

2<br />

+ r −<br />

1 2<br />

( δ δ12)<br />

s<strong>in</strong> ,<br />

<strong>in</strong> which r 2 is the ratio <strong>of</strong> LAPLACE force due to<br />

the second current I2 to gravitational force per unit<br />

length. <strong>The</strong> first range <strong>in</strong>tegral can be expressed by :<br />

2<br />

T 2<br />

′ −<br />

2<br />

′ = r .s<strong>in</strong> + cos − r .s<strong>in</strong><br />

[ ]<br />

2<br />

8π<br />

δ δ i 2 δ δ 2 δ i<br />

− cosδ<br />

lead<strong>in</strong>g to the relation :<br />

2<br />

2 8π<br />

δ ′ = 2<br />

T<br />

2<br />

1 + r2cos − , − cos<br />

with cos( δ )<br />

2<br />

=<br />

def<strong>in</strong>ed by r2 i<br />

i<br />

[ ( δ δ12) ( δ 2)<br />

]<br />

χ<br />

i<br />

2<br />

2<br />

1 + r<br />

.s<strong>in</strong>δ + χ .<br />

<strong>The</strong> period is given by :<br />

08 . b c<br />

2π<br />

g<br />

Tres2<br />

=<br />

⎛ 2<br />

4 2 π ⎛ δ 2 ⎞<br />

1+ r ⎜ 2 ⎜<br />

1−<br />

⎜ ⎟<br />

⎝ 64 ⎝ 90⎠<br />

and χχχχ i parameter<br />

At first approximation, the movement is given by :<br />

⎛ t ⎞<br />

δ = δ12 , + δ 2s<strong>in</strong>⎜2π<br />

+ ϕ⎟<br />

=<br />

⎝ T ⎠<br />

res2<br />

⎛ t<br />

δ12 , + ( δ i −δ12<br />

, ) cos⎜2π<br />

⎝ T<br />

Tres2δ ′ i ⎛ t ⎞<br />

s<strong>in</strong>⎜2π<br />

⎟<br />

2π<br />

⎝ T ⎠<br />

res2<br />

res2<br />

2<br />

⎞<br />

⎟<br />

⎠<br />

⎞<br />

⎟ +<br />

⎠<br />

At the end <strong>of</strong> the <strong>short</strong>-<strong>circuit</strong> t=Tk2, the angle is<br />

δ = δ T<br />

( )<br />

k 2 k 2<br />

<strong>The</strong> radial force dur<strong>in</strong>g this <strong>short</strong>-<strong>circuit</strong> is given by<br />

the (4.11 <strong>in</strong> volume 1 <strong>of</strong> [Ref 1]) formula type which<br />

is transformed as follows :<br />

R′<br />

G′<br />

( ) ( )<br />

= 3 cos δ + 3 s<strong>in</strong> δ − 2χ<br />

r2 i

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!