24.11.2012 Views

The mechanical effects of short-circuit currents in - Montefiore

The mechanical effects of short-circuit currents in - Montefiore

The mechanical effects of short-circuit currents in - Montefiore

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Figure 3.61 Displacement <strong>of</strong> the span at<br />

a) t = 0.1 s; b) t = 0.4 s<br />

Figure 3.62 Displacement <strong>of</strong> the span at<br />

c) t = 0.62 s; d) t = 0.93 s<br />

X<br />

TIME 0.15<br />

a.)<br />

X<br />

Z<br />

Z<br />

Y<br />

Y<br />

TIME 0.40<br />

TIME 0.62<br />

c.)<br />

b.)<br />

Z<br />

X Y<br />

X<br />

TIME 0.93<br />

Whereas, due to the halv<strong>in</strong>g <strong>of</strong> the conductor length, the<br />

horizontal motion now has twice the frequency ( Figure<br />

d.)<br />

Z<br />

Y<br />

64<br />

3.63b), the period for the unrestra<strong>in</strong>ed vertical direction<br />

(Figure 3.63c) rema<strong>in</strong>s approximately the same as for<br />

the calculations without <strong>in</strong>terphase-spacers. From<br />

(Figure 3.63d) it can be seen that the horizontally<br />

unmov<strong>in</strong>g mid-po<strong>in</strong>t <strong>of</strong> the conductor moves vertically<br />

<strong>in</strong> sympathy at the same frequency. For the tensile force<br />

on the conductor <strong>in</strong> (Figure 3.63a) this means that, due<br />

to the fitt<strong>in</strong>g <strong>of</strong> the <strong>in</strong>terphase-spacers, although twice as<br />

many tensile maxima F t occur, the number <strong>of</strong> drop<br />

maxima F f and their times rema<strong>in</strong> the same. Overall, it<br />

can be seen that the value <strong>of</strong> amplitude F t ≈ F f ≈ 22<br />

kN govern<strong>in</strong>g the design <strong>of</strong> the po<strong>in</strong>ts <strong>of</strong> suspension has<br />

rema<strong>in</strong>ed largely unchanged. This means that, although<br />

fitt<strong>in</strong>g a <strong>in</strong>terphase-spacer does not cause higher <strong>short</strong><strong>circuit</strong><br />

tensile forces, it does not cause substantially<br />

lower forces either.<br />

a.)<br />

b.)<br />

c.)<br />

d.)<br />

Seilzug<br />

-kraft<br />

<strong>in</strong> kN<br />

.5<br />

Seilaus<br />

-<br />

lenkung<br />

<strong>in</strong> m<br />

.0<br />

-.5<br />

.0<br />

Seil-<br />

-.2<br />

durchhang<br />

<strong>in</strong><br />

m<br />

-.4<br />

-.6<br />

Seildurchhang<br />

<strong>in</strong> .0<br />

m<br />

-.5<br />

-1.0<br />

30.<br />

20.<br />

10.<br />

0.<br />

.0 .5 1.0 1.5<br />

Zeit <strong>in</strong> s<br />

2.0 2.5 3.0<br />

.5<br />

1.Auschw<strong>in</strong>gmaximu<br />

1.Fallmaximum<br />

.0 .5 1.0 1.5<br />

Zeit <strong>in</strong> s<br />

2.0 2.5 3.0<br />

.0 .5 1.0 1.5<br />

Zeit <strong>in</strong> s<br />

2.0 2.5 3.0<br />

.0 .5 1.0 1.5<br />

Zeit <strong>in</strong> s<br />

2.0 2.5 3.0<br />

Figure 3.63 Time characteristics <strong>of</strong> the span<br />

with <strong>in</strong>terphase-spacers<br />

a) conductor tensile force<br />

b) horizontal motion at l/4<br />

c) vertical motion at l/4<br />

d) vertical motion at l/2<br />

Figure 3.64 shows the tensile/compressive stresses<br />

caused by the horizontal motion <strong>of</strong> the conductors <strong>in</strong> the<br />

phase spacer.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!