24.11.2012 Views

The mechanical effects of short-circuit currents in - Montefiore

The mechanical effects of short-circuit currents in - Montefiore

The mechanical effects of short-circuit currents in - Montefiore

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

(2.26)<br />

M<br />

el-pl<br />

⎡ y<br />

d/<br />

2<br />

y<br />

= 2⎢<br />

σ yb y + σ<br />

⎢∫<br />

F d<br />

y ∫<br />

⎣0<br />

y<br />

= σ<br />

F<br />

⎡<br />

d<br />

⎢<br />

⎛ ⎞<br />

⎜ ⎟<br />

⎢<br />

⎣<br />

⎝ 2 ⎠<br />

2<br />

2<br />

y<br />

⎤<br />

− ⎥ b<br />

3 ⎥<br />

⎦<br />

F<br />

⎤<br />

yb d y⎥<br />

⎥<br />

⎦<br />

When y = 0 the flow stress is <strong>in</strong> the complete cross<br />

section, Figure 2.1d. With a permanent lengthen<strong>in</strong>g <strong>in</strong><br />

the outer fibre <strong>of</strong> ε0,2 = 0,2 %, an outer moment MTr acts<br />

which is called realistic ultimate load. It is equal to the<br />

<strong>in</strong>ner moment Mel-pl accord<strong>in</strong>g to equation (2.26):<br />

(2.27)<br />

M<br />

Tr<br />

= M<br />

el-pl<br />

= 1,<br />

5Z<br />

m<br />

( y = 0)<br />

σ<br />

0,2<br />

m<br />

2<br />

d b<br />

= σ<br />

4<br />

= qZ σ<br />

In contrast to the pure elastic limit the outer moment can<br />

be <strong>in</strong>creased about 50 %. <strong>The</strong>n the load capacity is<br />

exhausted. <strong>The</strong> perfect plastic factor is q = 1,5 for<br />

rectangular pr<strong>of</strong>iles. With other pr<strong>of</strong>iles factor q<br />

deviates and is given <strong>in</strong> Table 2.2 [Ref 21, Ref 22].<br />

<strong>The</strong> permanent deformation <strong>of</strong> ε0,2 = 0,2 % is equivalent<br />

to the yield<strong>in</strong>g po<strong>in</strong>t Rp0,2. <strong>The</strong> maximum value <strong>of</strong> the<br />

stresses σm respectively σtot shall not be greater than<br />

given by the realistic ultimate load <strong>in</strong> equation (2.27):<br />

0,2<br />

0,2<br />

(2.28) σ m ≤ qRp0,2<br />

resp. σ tot ≤ qRp0,2<br />

It is recommended not to exceed the yield<strong>in</strong>g po<strong>in</strong>t <strong>in</strong><br />

the case <strong>of</strong> sub-conductor stress σs <strong>in</strong> order to hold the<br />

distance between the sub-conductors nearly constant:<br />

R ≤<br />

(2.29) s p0,2<br />

σ<br />

If ranges for the value Rp0,2 accord<strong>in</strong>g to the yield<strong>in</strong>g<br />

po<strong>in</strong>t are available, the m<strong>in</strong>imum limit Rp0,2 should be<br />

used <strong>in</strong> equations (2.28) and (2.29) to get a permanent<br />

deformation which is not too large.<br />

To regard the plasticity under consideration <strong>of</strong> the<br />

transition from complete to partial fixation a higher<br />

load<strong>in</strong>g is possible <strong>in</strong> contrast to the calculation only <strong>in</strong><br />

the elastic range, if a little permanent deformation is<br />

permitted. In the case <strong>of</strong> beams fixed/ fixed it becomes<br />

4/3·1,5 = 2 which agrees with the measured value <strong>in</strong><br />

equation (2.22). In substations, normally tubes with s/D<br />

= 0,02 ... 0,3 over two or more spans are used. In this<br />

case the load<strong>in</strong>g can be <strong>in</strong>creased by the factor 1,8 ...2,3.<br />

15<br />

Table 2.2: Factor q for different cross-sections<br />

<strong>The</strong> bend<strong>in</strong>g axis are dotted, and the forces are<br />

perpendicular to it<br />

q = 1,<br />

7<br />

1−<br />

q = 1,<br />

7<br />

1−<br />

1−<br />

q = 1,<br />

5<br />

1−<br />

2.2.3.2 <strong>The</strong> factors V<br />

σ and V<br />

σs<br />

q = 1,5<br />

q = 1,83<br />

q = 1,19<br />

( )<br />

( ) 4<br />

3<br />

1−<br />

2s<br />

/ D<br />

1−<br />

2s<br />

/ D<br />

( )<br />

( ) 4<br />

3<br />

1−<br />

2s<br />

/ D<br />

1−<br />

2s<br />

/ D<br />

Figure 2.2 shows the factor Vσ for the outer conductors<br />

L1 and L3 as function <strong>of</strong> the <strong>mechanical</strong> relevant<br />

natural frequency fc <strong>of</strong> the conductors for two damp<strong>in</strong>g<br />

decrements Λ and fixed supports. Vσ depends on fc<br />

because the load<strong>in</strong>g is composed from four partial<br />

functions accord<strong>in</strong>g to equation (2.13). With fc much<br />

lower than the system frequency f, Vσ is determ<strong>in</strong>ed by<br />

the constant terms <strong>in</strong> the electromagnetic force, it<br />

follows Vσ < 1. Is fc much higher than f, the conductor<br />

movement follows the electromagnetic force and<br />

therefore Vσ = 1. Intermediate amplifications occur if<br />

the <strong>mechanical</strong> relevant frequency or one <strong>of</strong> the higher<br />

eigenfrequencies is <strong>in</strong> the range <strong>of</strong> f or 2f; the<br />

amplifications with 2f are higher than with f. <strong>The</strong>y<br />

decrease with <strong>in</strong>creas<strong>in</strong>g damp<strong>in</strong>g; outside the<br />

resonances the damp<strong>in</strong>g is <strong>of</strong> m<strong>in</strong>or <strong>in</strong>fluence. Other<br />

fixations <strong>of</strong> the conductor shift the resonances.<br />

Only at the resonances with 2f and for fc/f > 1, Vσ is<br />

greater for the <strong>in</strong>ner conductor L2, because the term <strong>of</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!