24.11.2012 Views

The mechanical effects of short-circuit currents in - Montefiore

The mechanical effects of short-circuit currents in - Montefiore

The mechanical effects of short-circuit currents in - Montefiore

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

a) b)<br />

F m<br />

c)<br />

F m<br />

O<br />

d d d d d<br />

O<br />

OT O<br />

d d d D d d<br />

O T<br />

O<br />

O T<br />

O T<br />

d<br />

d<br />

b<br />

Figure 2.13 Stresses <strong>in</strong> ma<strong>in</strong> conductors<br />

<strong>The</strong> connect<strong>in</strong>g pieces are black<br />

a) Force perpendicular to surface<br />

b) Force <strong>in</strong> direction <strong>of</strong> surface<br />

c) Four connect<strong>in</strong>g pieces, two and two<br />

connected<br />

where n is an even number and ei is the distance<br />

between the centre <strong>of</strong> sub-conductor i and axis O-O. If<br />

the spac<strong>in</strong>gs <strong>of</strong> the sub-conductors are equal to the<br />

thickness d, the sum can be written:<br />

b<br />

F m<br />

n 2<br />

2 2 2 2<br />

∑ ei<br />

= d + ( 3d<br />

) + ( 3d<br />

) + L<br />

i=<br />

1<br />

(2.52)<br />

2<br />

⎛⎛<br />

n ⎞ ⎞ n<br />

+ ⎜⎜<br />

2 −1⎟d<br />

⎟ =<br />

⎝⎝<br />

2 ⎠ ⎠<br />

O<br />

d<br />

O<br />

b<br />

b<br />

b<br />

b<br />

b<br />

b<br />

2 ( n −1)<br />

2<br />

If n is an odd number, the result is the same as the one<br />

given by the equation (2.52). Hence for all n:<br />

n(<br />

n −1)<br />

2 2<br />

(2.53) J m = nJ s + 2As d = n(<br />

4n<br />

− 3)<br />

J s<br />

6<br />

<strong>The</strong> distance <strong>of</strong> the outer fibre from axis O-O is (2n –<br />

1)d/2. Zm becomes:<br />

(2.54)<br />

where<br />

Z<br />

m<br />

=<br />

J<br />

m<br />

( 2n<br />

−1)<br />

2 ( 4n<br />

− 3)<br />

n<br />

=<br />

2n<br />

−1<br />

3<br />

2<br />

Z<br />

s<br />

2 ( 4n<br />

− 3)<br />

n<br />

=<br />

d 2 2n<br />

−1<br />

d b<br />

d b<br />

(2.55) J s = Zs<br />

=<br />

12<br />

6<br />

In Figure 2.13c there are four sub-conductors, two by<br />

two connected with stiffen<strong>in</strong>g elements. <strong>The</strong> pairs are<br />

2<br />

d<br />

J<br />

6<br />

s<br />

2<br />

d<br />

26<br />

not connected, therefore Zm follows from equation<br />

(2.48); the section modulus <strong>of</strong> each pair is to be taken<br />

with respect to the axis OT- OT accord<strong>in</strong>g to equation<br />

(2.54) and n = 2:<br />

Z = 2Z 26<br />

= 2 ⋅ Z<br />

3<br />

52<br />

= Z<br />

3<br />

It is <strong>in</strong>dependent from the spac<strong>in</strong>g <strong>of</strong> the pairs.<br />

(2.56) m sT<br />

s s<br />

U- and I-pr<strong>of</strong>iles can be treated <strong>in</strong> similar manner.<br />

In equations (2.54) and (2.56) it is assumed an ideal<br />

rigid connection between the sub-conductors. However,<br />

the stiffen<strong>in</strong>g elements are mounted at discrete spots and<br />

no cont<strong>in</strong>uous stiffen<strong>in</strong>g is reached. <strong>The</strong>refore the actual<br />

section modulus are lower. [Ref 32] reports about tests<br />

with two sub-conductors Al 80 mm × 10 mm with<br />

spac<strong>in</strong>g <strong>of</strong> the thickness. <strong>The</strong> results can be summarised<br />

as follows:<br />

– one stiffen<strong>in</strong>g element practically does not <strong>in</strong>crease<br />

the stiffness;<br />

– with two or three stiffen<strong>in</strong>g elements, the actual<br />

section modulus is about 60 % <strong>of</strong> the value<br />

accord<strong>in</strong>g to equation (2.54);<br />

– with four elements, the actual value is about 80 %.<br />

Tests concern<strong>in</strong>g U- and I-pr<strong>of</strong>iles are not known.<br />

Section 2.2.2.3 and Table 5 <strong>of</strong> the standard recommend<br />

the follow<strong>in</strong>g section moduli for ma<strong>in</strong> conductors:<br />

– with rectangular pr<strong>of</strong>iles 60 %<br />

– with U- and I-pr<strong>of</strong>iles 50 %<br />

<strong>of</strong> the value <strong>of</strong> ideal rigid connection.<br />

3. Ma<strong>in</strong> conductor force <strong>in</strong> the direction <strong>of</strong> the surface<br />

If the electromagnetic force Fm is as shown <strong>in</strong> Figure<br />

2.13b, the connect<strong>in</strong>g pieces have non-essential<br />

<strong>in</strong>fluence on the stiffness; they may be spacers or<br />

stiffen<strong>in</strong>g elements. However, the sum <strong>of</strong> the lengths <strong>of</strong><br />

the elements has to be much smaller than the span<br />

length. <strong>The</strong> ma<strong>in</strong> conductor axis O-O co<strong>in</strong>cides with the<br />

sub-conductor axis Os-Os. In each sub-conductor the<br />

outer moment Mm/n results <strong>in</strong> the <strong>in</strong>ner moment M:<br />

J<br />

d 2<br />

s<br />

(2.57) M m = nM = n σm<br />

= nZsσ<br />

m = Z mσ<br />

m<br />

<strong>The</strong> section modulus Zm <strong>of</strong> the ma<strong>in</strong> conductor is the<br />

sum <strong>of</strong> the section moduli Zs:<br />

(2.58)<br />

Z m = nZs<br />

2.2.5.3 Section modulus <strong>of</strong> sub-conductors<br />

Besides the force Fm between the ma<strong>in</strong> conductors, on<br />

each sub-conductor the force Fs accord<strong>in</strong>g to equation<br />

(2.4) which gives the outer moment Ms, Figure 2.14.<br />

<strong>The</strong> sub-conductors move towards each other and they<br />

behave like s<strong>in</strong>gle conductors fixed at both ends. Js and<br />

Zs <strong>of</strong> a sub-conductor is equal to the correspondent<br />

values <strong>of</strong> a s<strong>in</strong>gle conductor hav<strong>in</strong>g the same<br />

dimensions and bend<strong>in</strong>g axis. For the rectangular

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!