24.11.2012 Views

The mechanical effects of short-circuit currents in - Montefiore

The mechanical effects of short-circuit currents in - Montefiore

The mechanical effects of short-circuit currents in - Montefiore

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>The</strong> w<strong>in</strong>d may act <strong>in</strong> the same direction as the<br />

electrodynamic loads. This is the case for phases 2, 4<br />

and 6 <strong>in</strong> the above histograms. But for the other phases<br />

it acts <strong>in</strong> the oppos<strong>in</strong>g direction. With respect to the<br />

number <strong>of</strong> loaded elements, the cumulated risks on the<br />

various phases <strong>of</strong> the two busbars gives a mean number<br />

n per suite <strong>of</strong> loaded post <strong>in</strong>sulators <strong>of</strong> less than 1.1 <strong>in</strong><br />

the case <strong>of</strong> comb<strong>in</strong>ed loads and <strong>of</strong> approximately 2 <strong>in</strong><br />

the case <strong>of</strong> a simple electrodynamic hypothesis.<br />

5.2.3.7.4. Structures with a s<strong>in</strong>gle busbar<br />

For certa<strong>in</strong> substations with only one busbar or for cross<br />

connections comprised <strong>of</strong> rigid bars, the analyses made<br />

<strong>in</strong> 5.2.3.7.2 for the fault on a s<strong>in</strong>gle busbar can be<br />

reused.<br />

5.2.3.7.5. Influence <strong>of</strong> connectors<br />

Another factor reduces the number <strong>of</strong> post <strong>in</strong>sulators<br />

concerned, i.e., the distribution <strong>of</strong> loads between post<br />

<strong>in</strong>sulators accord<strong>in</strong>g to the type <strong>of</strong> connector. <strong>The</strong> types<br />

<strong>of</strong> connector must frequently <strong>in</strong>stalled are:<br />

a) successions <strong>of</strong> clamped - clamped and p<strong>in</strong>ned -<br />

p<strong>in</strong>ned connectors. In this case, half the post<br />

<strong>in</strong>sulators (n=2) are loaded (ρ=0.5).<br />

b) successions <strong>of</strong> clamped - clamped then slid<strong>in</strong>g, -<br />

slid<strong>in</strong>g then p<strong>in</strong>ned - p<strong>in</strong>ned connectors. In this case,<br />

two-thirds <strong>of</strong> the post <strong>in</strong>sulators (n=3) are loaded<br />

(ρ=0.67).<br />

c) clamped - p<strong>in</strong>ned fitt<strong>in</strong>gs which distribute loads<br />

uniformly, which means that all post <strong>in</strong>sulators<br />

located relatively far from the extremities along the<br />

path <strong>of</strong> maximum <strong>currents</strong> are loaded (ρ=1).<br />

We def<strong>in</strong>e ρ as:<br />

(5.24) ρ =<br />

1<br />

n = 2ou3 n= 2 ou 3<br />

∑<br />

n=<br />

1<br />

Risk( F / F )<br />

Risk( F / F )<br />

0<br />

n R<br />

<strong>The</strong> set (Fn) corresponds to the loads on the post<br />

<strong>in</strong>sulators <strong>of</strong> the most loaded busbar (longitud<strong>in</strong>al<br />

variation <strong>of</strong> load), but limited <strong>in</strong> size to two or three<br />

elements def<strong>in</strong>ed <strong>in</strong> paragraphs a) and b).<br />

5.2.3.7.6. Common mode faults<br />

A dist<strong>in</strong>ction must be made between a substation and a<br />

family <strong>of</strong> substations. In the case <strong>of</strong> one substation,<br />

there may be common mode faults such as those<br />

result<strong>in</strong>g from component manufacture or assembly.<br />

Example: On a given substation, it is very likely that<br />

many <strong>of</strong> the ceramic post <strong>in</strong>sulators come from the<br />

same production batch. This may give rise to<br />

statistically above-average or below-average strength.<br />

In <strong>short</strong>, for the analysis <strong>of</strong> a family <strong>of</strong> substations, the<br />

advantages <strong>of</strong> the probabilistic approach are clearly<br />

apparent.<br />

R<br />

95<br />

5.2.3.7.7. Conclusions<br />

For N sequences on a section <strong>of</strong> busbars, we thus take<br />

. ρ . post <strong>in</strong>sulators subject to maximum loads.<br />

n N<br />

5.2.3.8 FAILURE RECURRENCE TIME<br />

5.2.3.8.1. Risk at a substation<br />

For l<strong>in</strong>e fault<br />

<strong>The</strong> overall maximum risk at a substation is given by<br />

the expression:<br />

(5.25) R l n N Risk F<br />

L<br />

o<br />

P = νλη . . . P.<br />

. ρ.<br />

. ( )<br />

F<br />

with ν : normal operat<strong>in</strong>g rate <strong>of</strong> fault elim<strong>in</strong>ation (close<br />

to 1).<br />

λ : number <strong>of</strong> faults on overhead l<strong>in</strong>es connected per km<br />

and per year,<br />

η : rate <strong>of</strong> high-amplitude polyphase faults (hence nonresistive),<br />

lP : cumulative length <strong>of</strong> the risk zone <strong>in</strong> km,<br />

n : number <strong>of</strong> loaded post <strong>in</strong>sulators per busbar suite,<br />

ρ : coefficient depend<strong>in</strong>g on the type <strong>of</strong> connector<br />

N : suite number,<br />

Example:<br />

For λ=20x10 -2 per km and per year, η=30%, l=6km,<br />

n =1,5 ρ=1, N=14 suites, Risk Fo<br />

R<br />

( )= 10<br />

FR<br />

-5 , there is<br />

thus a probability <strong>of</strong> substation failure <strong>of</strong> around 7.6 10 -<br />

5<br />

, correspond<strong>in</strong>g to a recurrence time <strong>of</strong> more than<br />

13000 years for a safety factor <strong>of</strong> 0.7.<br />

For l<strong>in</strong>e fault <strong>in</strong> the event <strong>of</strong> failure<br />

<strong>The</strong> previous analysis is also applicable <strong>in</strong> the event <strong>of</strong><br />

failure (<strong>circuit</strong> breakers or protection devices), though<br />

the elim<strong>in</strong>ation times may be different and the result<strong>in</strong>g<br />

loads <strong>in</strong>creased. It is important to determ<strong>in</strong>e the<br />

amplitude <strong>of</strong> loads amplification, <strong>in</strong> view <strong>of</strong> the remarks<br />

made <strong>in</strong> section 5.2.3.1.4 on the effect <strong>of</strong> saturation<br />

when the clearance time exceeds the <strong>mechanical</strong><br />

reaction time. In (5.25), Fo is replaced by F1 and the<br />

failure rate: ν : (protection system and/or <strong>circuit</strong> breaker<br />

failure rate) is taken <strong>in</strong>to account.<br />

<strong>The</strong> <strong>in</strong>crease <strong>in</strong> risk is <strong>of</strong>ten low and the reduction <strong>in</strong> the<br />

failure rate means that this term can be ignored.<br />

For substation fault<br />

<strong>The</strong> maximum overall risk at a substation is given by<br />

the expression: R n N Risk F<br />

P o<br />

P = λη . . . ρ.<br />

. ( ) with<br />

F<br />

λ : annual frequency <strong>of</strong> faults <strong>in</strong> the substation,<br />

η : rate <strong>of</strong> high-amplitude non-resistive polyphase faults<br />

(for example, accidental earth<strong>in</strong>g with all available<br />

network power).<br />

R

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!