24.11.2012 Views

The mechanical effects of short-circuit currents in - Montefiore

The mechanical effects of short-circuit currents in - Montefiore

The mechanical effects of short-circuit currents in - Montefiore

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

)<br />

a)<br />

σF σ0,2 σ0,01 σ<br />

ε 0,01 ε 0,2<br />

c)<br />

Figure 2.1 Stress-stra<strong>in</strong> diagram and stress distribution <strong>in</strong> a<br />

rectangular cross-section<br />

a) Stress-stra<strong>in</strong>;<br />

1 copper, alum<strong>in</strong>ium;<br />

2 ideal elastic-plastic<br />

b) Stress <strong>in</strong> the elastic range<br />

c) Stress <strong>in</strong> the elastic-plastic range<br />

d) Stress <strong>in</strong> the full plastic range<br />

2<br />

1<br />

ε<br />

d)<br />

14<br />

<strong>The</strong> rectangular beam is loaded by a force Fm per unit<br />

length. In the elastic range the stress <strong>in</strong>creases l<strong>in</strong>early<br />

from the neutral axis to the outer fibre, Figure 2.1b. <strong>The</strong><br />

<strong>in</strong>ner moment is<br />

(2.25)<br />

M<br />

el<br />

2<br />

( x,<br />

y)<br />

d b<br />

= σ<br />

6<br />

m<br />

m<br />

m<br />

d/<br />

2<br />

= ∫σydA= ∫<br />

A<br />

= Z<br />

σ<br />

−d/<br />

2<br />

σ<br />

m<br />

y<br />

d / 2<br />

yb d y<br />

An outer moment acts <strong>in</strong> opposite direction, e.g. Fl/8 <strong>in</strong><br />

the case <strong>of</strong> a beam with both ends supported. <strong>The</strong> outer<br />

moment is now <strong>in</strong>creased until the yield<strong>in</strong>g po<strong>in</strong>t σF is<br />

reached. Because all other fibres are <strong>in</strong> the elastic range,<br />

the outer fibre is prevented from yield<strong>in</strong>g, and high<br />

deformations are not allowed to occur. For better usage,<br />

a further propagation <strong>of</strong> the flow stress over the cross<br />

section is permitted, Figure 2.1c. <strong>The</strong> areas y < d / 2<br />

are not fully stretched and are able to take part <strong>in</strong> the<br />

weight-carry<strong>in</strong>g. Dur<strong>in</strong>g partial plasticity the <strong>in</strong>ner<br />

moment becomes<br />

Table 2.1: Factors β and α for different supports<br />

Maximum moment Mpl,max with plastic h<strong>in</strong>ges at the fix<strong>in</strong>g po<strong>in</strong>ts <strong>in</strong> the case <strong>of</strong> s<strong>in</strong>gle span beams or at the <strong>in</strong>ner supports <strong>of</strong> cont<strong>in</strong>uous<br />

beams, maximum moment Mel,max <strong>in</strong> the elastic range<br />

type <strong>of</strong> beam and support Mpl,max Mel,max β α<br />

s<strong>in</strong>gle span<br />

beam<br />

A and B:<br />

supported<br />

A: fixed<br />

B: supported<br />

A and B:<br />

fixed<br />

two spans<br />

cont<strong>in</strong>uous<br />

beam with<br />

equidistant<br />

supports 3 or<br />

more spans<br />

–<br />

m<br />

11<br />

l F<br />

m<br />

16<br />

l F<br />

m<br />

11<br />

l F<br />

m<br />

11<br />

l F<br />

m<br />

8<br />

l F 1,0<br />

A: 0,5<br />

B: 0,5<br />

m<br />

8<br />

l F 8 A: 0,625<br />

= 0,<br />

73<br />

11 B: 0,375<br />

m<br />

12<br />

l F 8 A: 0,5<br />

= 0,<br />

5<br />

16 B: 0,5<br />

m<br />

8<br />

l F 8 A: 0375<br />

= 0,<br />

73<br />

11 B: 1,25<br />

m<br />

8<br />

l F 8 A: 0,4<br />

= 0,<br />

73<br />

11 B: 1,1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!